Advertisement

Journal of Mathematical Sciences

, Volume 237, Issue 3, pp 460–472 | Cite as

On Some Discrete Nonlinear Dynamical Systems

  • V. S. SekovanovEmail author
  • V. S. Sekovanov
Article
  • 15 Downloads

Abstract

This paper studies the spectrum of the Hénon map and the spectrum of the baker’s map. The character of fixed points of the Hénon map and randomness of the baker’s map are analyzed. Attractors of the modified Hénon map and the modified baker’s map are considered; cases where attractors are fractal sets are selected.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. T. Grinchenko, V. T. Matsibura, and A. A. Snarskiy, Introduction to Nonlinear Dynamics: Chaos and Fractals [in Russian], LKI, Moscow (2007).Google Scholar
  2. 2.
    R. M. Kronover, Fractals and Chaos in Dynamic Systems. Basic Theory [in Russian], Postmarket, Moscow (2000).Google Scholar
  3. 3.
    G. G. Malinetskiy, Mathematical Foundations of Synergetics. Chaos, Structures, Computational Experiment [in Russian], KomKniga, Moscow (2005).Google Scholar
  4. 4.
    B. Mandel’brot, Fractal Geometry of Nature [in Russian], Inst. Komp. Issled., RHD, Moscow–Izhevsk (2010).Google Scholar
  5. 5.
    M. Schroeder, Fractals, Chaos, Power Laws. Minutes from an Infinite Paradise, Dover Books on Physics, Dover (2009).Google Scholar
  6. 6.
    H. G. Schuster, Deterministic Chaos [Russian translation], Mir, Moscow (1988).Google Scholar
  7. 7.
    V. S. Sekovanov, “On Julia set of some rational functions,” Vestn. KGU im. N. A. Nekrasova, 18, No. 2, 23–28 (2012).Google Scholar
  8. 8.
    V. S. Sekovanov, “The map “Arnold’s cat” and methodology of its study,” Vestn. KGU im. N. A. Nekrasova, 19, No. 2, 143–149 (2013).Google Scholar
  9. 9.
    V. S. Sekovanov, Elements of the Theory of Fractal Sets [in Russian], LIBROKOM, Moscow (2013).Google Scholar
  10. 10.
    V. S. Sekovanov, What Is Fractal Geometry? [in Russian], Synergetics: From the Past to the Future, Ser. 75, No. 114, LENAND, Moscow (2016).Google Scholar
  11. 11.
    V. S. Sekovanov and S. B. Kozyrev, “Overcoming stereotypes of thinking when considering the concept of fractal dimension of the set,” Vestn. KGU im. N. A. Nekrasova, 12, No. 7, 87–93 (2006).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Kostroma State University named after N. A. Nekrasov, Institute of Physical, Mathematical, and Natural Sciences, Department of Applied Mathematics and Information TechnologyKostromaRussia

Personalised recommendations