Advertisement

Journal of Mathematical Sciences

, Volume 237, Issue 3, pp 387–409 | Cite as

Universal Equivalence of General and Special Linear Groups Over Fields

  • E. I. BuninaEmail author
  • G. A. Kaleeva
Article
  • 2 Downloads

Abstract

In this paper, we study universal equivalence of general and special linear groups over fields. We give the following criterion for this relation to hold: two groups Gn(K) and Gm(L) (G = GL, SL, K and L are infinite fields) are universally equivalent if and only if n = m and the fields K and L are universally equivalent.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. I. Beidar and A. V. Mikhalev, “On Mal’cev’s theorem on elementary equivalence of linear groups,” in: L. A. Bokut’, A. I. Mal’cev, and A. I. Kostrikin, eds., Proc. of the Int. Conf. on Algebra Dedicated to the Memory of A. I. Malcev (Novosibirsk, 1989 ), Contemp. Math., Vol. 131, Amer. Math. Soc., 1992, pp. 29–35 (1992).Google Scholar
  2. 2.
    E. I. Bunina, “Elementary equivalence of unitary linear groups over fields,” Fundam. Prikl. Mat., 4, No. 4, 1265–1278 (1998).MathSciNetGoogle Scholar
  3. 3.
    E. I. Bunina, “Elementary equivalence of unitary linear groups over rings and fields,” Russ. Math. Surv., 53, No. 2, 137–138 (1998).MathSciNetzbMATHGoogle Scholar
  4. 4.
    E. I. Bunina, “Elementary equivalence of Chevalley groups over fields,” J. Math. Sci., 152, No. 2, 155–190 (2008).MathSciNetzbMATHGoogle Scholar
  5. 5.
    E. I. Bunina, Application of Localization Method for Description of Automorphisms of Linear Groups over Commutative Rings, http://halgebra.math.msu.su/wiki/lib/exe/fetch.php/specialcourses:speckurs10.pdf (2010).
  6. 6.
    E. I. Bunina, “Automorphisms of Chevalley groups of types Al, Dl, El over local rings with 1/2,” J. Math. Sci., 167, No. 6, 749–766 (2010).MathSciNetzbMATHGoogle Scholar
  7. 7.
    E. I. Bunina, “Elementary equivalence of Chevalley groups over local rings,” Sb. Math., 201, No. 3, 321–337 (2010).MathSciNetzbMATHGoogle Scholar
  8. 8.
    E. I. Bunina, A. V. Mikhalev, and A. G. Pinus, Elementary and Other Relative Logical Equivalences of Classical Universal Algebras [in Russian], MCCME, Moscow (2015).Google Scholar
  9. 9.
    P. C. Eklof, “Some model theory for Abelian groups,” J. Symb. Logic, 37, 335–342 (1972).MathSciNetzbMATHGoogle Scholar
  10. 10.
    Yu. L. Ershov and E. A. Palyutin, Mathematical Logic [in Russian], Nauka, Moscow (1987).zbMATHGoogle Scholar
  11. 11.
    Yu. Sh. Gurevich and A. I. Kokorin, “Universal equivalence of ordered Abelian groups,” Algebra Logic, 2, No. 1, 37–39 (1963).MathSciNetGoogle Scholar
  12. 12.
    N. G. Hisamiev, “Universal theory of structurally ordered Abelian groups,” Algebra Logic, 5, No. 3, 71–76 (1966).MathSciNetGoogle Scholar
  13. 13.
    A. I. Maltsev, “On elementary properties of linear groups,” Probl. Mat. Mech., 110–132 (1961).Google Scholar
  14. 14.
    A. A. Mishchenko and E. I. Timoshenko, “Universal equivalence of partially commutative nilpotent groups,” Sib. Math. J., 52, No. 5, 884–891 (2011).MathSciNetzbMATHGoogle Scholar
  15. 15.
    O. T. O’Meara, Lectures on Linear Groups, Amer. Math. Soc., Providence (1974).Google Scholar
  16. 16.
    E. N. Poroshenko and E. I. Timoshenko, “Universal equivalence of partially commutative metabelian Lie algebras,” J. Algebra, 384, 143–168 (2013).MathSciNetzbMATHGoogle Scholar
  17. 17.
    A. D. Taymanov, “Characteristics of axiomatizable classes of models,” Algebra Logic, 1, No. 4, 5–31 (1962).MathSciNetGoogle Scholar
  18. 18.
    E. I. Timoshenko, “On universally equivalent solvable groups,” Algebra Logic, 39, No. 2, 227–240 (2000).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations