Advertisement

Journal of Mathematical Sciences

, Volume 236, Issue 6, pp 579–593 | Cite as

Second Boundary-Value Problem for the Lavrent’ev–Bitsadze Equation in a Rectangular Domain with Two Degeneration Lines

  • A. A. GimaltdinovaEmail author
Article
  • 3 Downloads

Abstract

For a mixed-type equation, we examine the second boundary-value problem and by using the spectral method prove the uniqueness and existence of solutions. The uniqueness criterion is proved based on the completeness property of the biorthogonal system of functions corresponding to the onedimensional spectral problem. A solution of the problem is constructed as the sum of a biorthogonal series.

Keywords and phrases

equation of mixed type biorthogonal system of functions completeness existence and uniqueness of solution 

AMS Subject Classification

35M12 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Bakhristova, “Neumann problem for mixed-type equations in rectangular domains,” Izv. Vyssh. Ucheb. Zaved. Ser. Mat., Izv. Vyssh. Ucheb. Zaved. Ser. Mat., 413, No. 11, 12–19 (2009).MathSciNetzbMATHGoogle Scholar
  2. 2.
    L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Surv. Appl. Math., 3, Wiley, New York (1958).Google Scholar
  3. 3.
    A. V. Bitsadze, “Ill-posedness of the Dirichlet problem for mixed-type equations,” Dokl. Akad. Nauk SSSR, 122, No. 2, 167–170 (1958).MathSciNetzbMATHGoogle Scholar
  4. 4.
    J. R. Cannon, “Dirichlet problem for an equation of mixed type with a discontinious coefficient,” Ann. Math. Pure Appl., 62, 371–377 (1963).CrossRefGoogle Scholar
  5. 5.
    F. I. Frankl, “To the theory of the Laval nozzle,” Izv. Akad. Nauk SSSR. Ser. Mat., 9, No. 5, 387–422 (1945).MathSciNetzbMATHGoogle Scholar
  6. 6.
    A. A. Gimaltdinova, “Dirichlet problem for the Lavrent’ev–Bitsadze equation in a rectangular domain with two degeneration lines,” Dokl. Ross. Akad. Nauk, 460, No. 3, 260–265 (2015).MathSciNetzbMATHGoogle Scholar
  7. 7.
    A. A. Gimaltdinova, “Neumann problem for the Lavrent’ev–Bitsadze equation in a rectangular domain with two degeneration lines,” Dokl. Ross. Akad. Nauk, 466, No. 1, 7–11 (2016).MathSciNetzbMATHGoogle Scholar
  8. 8.
    A. A. Gimaltdinova and K. V. Kurman, “On the completeness of a certain pair of biorthogonally adjoint systems of functions,” Vestn. Samar. Tekhn. Univ. Ser. Fiz.-Mat. Nauk, 19, No. 1 (38), 7–18 (2015).CrossRefGoogle Scholar
  9. 9.
    V. A. Il’in, “Proof of uniqueness and membership in \( {W}_2^1 \) of the classical solution of a mixed problem for a self-adjoint hyperbolic equation,” Mat. Zametki, 17, No. 1, 91–101 (1975).MathSciNetGoogle Scholar
  10. 10.
    M. M. Khachev, “On the Dirichlet problem for a mixed-type equation,” Differ. Uravn., 12, No. 1, 137–143 (1976).MathSciNetGoogle Scholar
  11. 11.
    I. S. Lomov, “Nonsmooth eigenfunctions in problems of mathematical physics,” Differ. Uravn., 47, No. 3, 358–365 (2011).MathSciNetzbMATHGoogle Scholar
  12. 12.
    C. S. Morawetz, “Uniqueness for the analogue of the Neuman problem for mixed equations,” Michigan Math. J., 1, 5–14 (1957).zbMATHGoogle Scholar
  13. 13.
    A. M. Nakhushev, “Uniqueness condition for the Dirichlet problem for a mixed-type equation in a cylindrical domain,” Differ. Uravn., 6, No. 1, 190–191 (1970).Google Scholar
  14. 14.
    K. B. Sabitov, “Dirichlet problem for a mixed-type equation in a rectangular domain,” Dokl. Ross. Akad. Nauk, 413, No. 1, 23–26 (2007).Google Scholar
  15. 15.
    K. B. Sabitov and A. A. Akimov, “On the theory of analogs of the Neumann problems for mixedtype equations,” Izv. Vyssh. Ucheb. Zaved. Ser. Mat., 10, 73–80 (2001).zbMATHGoogle Scholar
  16. 16.
    K. B. Sabitov, G. G. Bikkulova, and A. A. Gimaltdinova, Theory of Mixed-Type Equations with two Degeneration Lines [in Russian], Ufa (2006).Google Scholar
  17. 17.
    K. B. Sabitov and A. A. Karamova, “Solution of one problem of gas dynamics for a mixed-type equation with a nonsmooth degeneration line,” Differ. Uravn., 37, No. 1, 111–116 (2002).zbMATHGoogle Scholar
  18. 18.
    K. B. Sabitov, A. A. Karamova, and G. G. Sharafutdinova, “On the theory of mixed-type equations with two degeneration lines,” Izv. Vyssh. Ucheb. Zaved. Ser. Mat., 11, 70–80 (1999).zbMATHGoogle Scholar
  19. 19.
    K. B. Sabitov and G. G. Sharafutdinova, “Tricomi problem for a mixed-type equation with two perpendicular degeneration lines,” Differ. Uravn., 39, No. 6, 788–800 (2003).MathSciNetzbMATHGoogle Scholar
  20. 20.
    B. V. Shabat, “Examples of solutions to the Dirichlet problem for mixed-type equations,” Dokl. Akad. Nauk SSSR, 112, No. 3, 386–389 (1957).MathSciNetzbMATHGoogle Scholar
  21. 21.
    A. P. Soldatov, “Dirichlet-type problems for the Lavrent’ev–Bitsadze equation, I, II,” Dokl. Ross. Akad. Nauk, 332, No. 6, 696–698 (1993); 333, No. 1, 16–18 (1994).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ufa State Petroleum Technological UniversityUfaRussia

Personalised recommendations