Advertisement

Journal of Mathematical Sciences

, Volume 235, Issue 4, pp 455–472 | Cite as

Dissipation-Induced Instabilities in Magnetized Flows

  • O. N. Kirillov
Article
  • 12 Downloads

Abstract

We study local instabilities of a differentially rotating viscous flow of electrically conducting incompressible fluid subject to an external azimuthal magnetic field. A hydrodynamically stable flow can be destabilized by the magnetic field both in an ideal and a viscous and resistive system giving rise to the azimuthal magnetorotational instability. A special solution to the equations of ideal magnetohydrodynamics characterized by the constant total pressure, the fluid velocity parallel to the direction of the magnetic field, and by the magnetic and kinetic energies that are finite and equal—the Chandrasekhar equipartition solution—is marginally stable in the absence of viscosity and resistivity. Performing a local stability analysis, we find the conditions under which the azimuthal magnetorotational instability can be interpreted as a dissipation-induced instability of the Chandrasekhar equipartition solution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Arnold, “On matrices depending on parameters,” Russ. Math. Surv., 26, 29–43 (1971).MathSciNetCrossRefGoogle Scholar
  2. 2.
    S. A. Balbus and J. F. Hawley, “A powerful local shear instability in weakly magnetized disks 1. Linear analysis,” Astrophys. J., 376, 214–222 (1991).CrossRefGoogle Scholar
  3. 3.
    S. A. Balbus and J. F. Hawley, “A powerful local shear instability in weakly magnetized disks 4. Nonaxisymmetric perturbations,” Astrophys. J., 400, 610–621 (1992).CrossRefGoogle Scholar
  4. 4.
    V. V. Beletsky and E. M. Levin, “Stability of a ring of connected satellites,” Acta Astron., 12, 765–769 (1985).CrossRefGoogle Scholar
  5. 5.
    H. Bilharz, “Bemerkung zu einem Satze von Hurwitz,” Z. Angew. Math. Mech., 24, 77–82 (1944).MathSciNetCrossRefGoogle Scholar
  6. 6.
    A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden, and T. S. Ratiu, “Dissipation-induced instabilities,” Ann. Inst. H. Poincaré Anal. Non Linéaire, 11, 37–90 (1994).MathSciNetCrossRefGoogle Scholar
  7. 7.
    O. I. Bogoyavlenskij, “Unsteady equipartition MHD solutions,” J. Math. Phys., 45, 381–390 (2004).MathSciNetCrossRefGoogle Scholar
  8. 8.
    S. Boldyrev, D. Huynh, and V. Pariev, “Analog of astrophysical magnetorotational instability in a Couette–Taylor flow of polymer fluids,” Phys. Rev. E, 80, 066310 (2009).CrossRefGoogle Scholar
  9. 9.
    V. V. Bolotin, Nonconservative Problems of the Theory of Elastic Stability, Pergamon Press, Oxford–London–New York–Paris (1963).Google Scholar
  10. 10.
    O. Bottema, “The Routh–Hurwitz condition for the biquadratic equation,” Indag. Math., 18, 403–406 (1956).MathSciNetCrossRefGoogle Scholar
  11. 11.
    T. J. Bridges and F. Dias, “Enhancement of the Benjamin–Feir instability with dissipation,” Phys. Fluids, 19, 104104 (2007).CrossRefGoogle Scholar
  12. 12.
    S. Chandrasekhar, “On the stability of the simplest solution of the equations of hydromagnetics,” Proc. Natl. Acad. Sci. USA, 42, 273–276 (1956).MathSciNetCrossRefGoogle Scholar
  13. 13.
    S. Chandrasekhar, “The stability of nondissipative Couette flow in hydromagnetics,” Proc. Natl. Acad. Sci. USA, 46, 253–257 (1960).CrossRefGoogle Scholar
  14. 14.
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Oxford University Press, Oxford (1961).zbMATHGoogle Scholar
  15. 15.
    S. Chandrasekhar, A Scientific Autobiography: S. Chandrasekhar, World Scientific, Singapore (2010).Google Scholar
  16. 16.
    S. Dobrokhotov and A. Shafarevich, “Parametrix and the asymptotics of localized solutions of the Navier–Stokes equations in R 3, linearized on a smooth flow,” Math. Notes, 51, 47–54 (1992).MathSciNetCrossRefGoogle Scholar
  17. 17.
    F. Ebrahimi, B. Lefebvre, C. B. Forest, and A. Bhattacharjee, “Global Hall-MHD simulations of magnetorotational instability in the plasma Couette flow experiment,” Phys. Plasmas, 18, 062904 (2011).CrossRefGoogle Scholar
  18. 18.
    B. Eckhardt and D. Yao, “Local stability analysis along Lagrangian paths,” Chaos Solitons Fractals, 5 (11), 2073–2088 (1995).MathSciNetCrossRefGoogle Scholar
  19. 19.
    K. S. Eckhoff, “On stability for symmetric hyperbolic systems, I,” J. Differ. Equ., 40, 94–115 (1981).MathSciNetCrossRefGoogle Scholar
  20. 20.
    K. S. Eckhoff, “Linear waves and stability in ideal magnetohydrodynamics,” Phys. Fluids, 30, 3673–3685 (1987).CrossRefGoogle Scholar
  21. 21.
    S. Friedlander and M. M. Vishik, “On stability and instability criteria for magnetohydrodynamics,” Chaos, 5, 416–423 (1995).MathSciNetCrossRefGoogle Scholar
  22. 22.
    S. V. Golovin and M. K. Krutikov, “Complete classification of stationary flows with constant total pressure of ideal incompressible infinitely conducting fluid,” J. Phys. A, 45, 235501 (2012).MathSciNetCrossRefGoogle Scholar
  23. 23.
    H. Ji and S. Balbus, “Angular momentum transport in astrophysics and in the lab,” Phys. Today, August 2013, 27–33 (2013).CrossRefGoogle Scholar
  24. 24.
    P. L. Kapitsa, “Stability and passage through the critical speed of the fast spinning rotors in the presence of damping,” Z. Tech. Phys., 9, 124–147 (1939).Google Scholar
  25. 25.
    O. N. Kirillov, “Campbell diagrams of weakly anisotropic flexible rotors,” Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465, 2703–2723 (2009).MathSciNetCrossRefGoogle Scholar
  26. 26.
    O. N. Kirillov, “Stabilizing and destabilizing perturbations of PT-symmetric indefinitely damped systems,” Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 371, 20120051 (2013).MathSciNetCrossRefGoogle Scholar
  27. 27.
    O. N. Kirillov, Nonconservative Stability Problems of Modern Physics, De Gruyter, Berlin–Boston (2013).CrossRefGoogle Scholar
  28. 28.
    O. N. Kirillov and A. P. Seyranian, “Metamorphoses of characteristic curves in circulatory systems,” J. Appl. Math. Mech., 66 (3), 371–385 (2002).MathSciNetCrossRefGoogle Scholar
  29. 29.
    O. N. Kirillov and F. Stefani, “On the relation of standard and helical magnetorotational instability,” Astrophys. J., 712, 52–68 (2010).CrossRefGoogle Scholar
  30. 30.
    O. N. Kirillov and F. Stefani, “Standard and helical magnetorotational instability: How singularities create paradoxal phenomena in MHD,” Acta Appl. Math., 120, 177–198 (2012).MathSciNetCrossRefGoogle Scholar
  31. 31.
    O. N. Kirillov and F. Stefani, “Extending the range of the inductionless magnetorotational instability,” Phys. Rev. Lett., 111, 061103 (2013).CrossRefGoogle Scholar
  32. 32.
    O. N. Kirillov, F. Stefani, and Y. Fukumoto, “A unifying picture of helical and azimuthal MRI, and the universal significance of the Liu limit,” Astrophys. J., 756(83) (2012).Google Scholar
  33. 33.
    O. N. Kirillov, F. Stefani, and Y. Fukumoto, “Instabilities of rotational flows in azimuthal magnetic fields of arbitrary radial dependence,” Fluid Dyn. Res., 46, 031403 (2014).MathSciNetCrossRefGoogle Scholar
  34. 34.
    O. N. Kirillov, F. Stefani, and Y. Fukumoto, “Local instabilities in magnetized rotational flows: A short-wavelength approach,” J. Fluid Mech., 760, 591–633 (2014).MathSciNetCrossRefGoogle Scholar
  35. 35.
    O. N. Kirillov and F. Verhulst, “Paradoxes of dissipation-induced destabilization or who opened Whitney’s umbrella?” Z. Angew. Math. Mech., 90 (6), 462–488 (2010).MathSciNetCrossRefGoogle Scholar
  36. 36.
    R. Krechetnikov and J. E. Marsden, “Dissipation-induced instabilities in finite dimensions,” Rev. Mod. Phys., 79, 519–553 (2007).MathSciNetCrossRefGoogle Scholar
  37. 37.
    E. R. Krueger, A. Gross, and R. C. Di Prima, “On relative importance of Taylor-vortex and nonaxisymmetric modes in flow between rotating cylinders,” J. Fluid Mech., 24 (3), 521–538 (1966).CrossRefGoogle Scholar
  38. 38.
    V. V. Kucherenko and A. Kryvko, “Interaction of Alfvén waves in the linearized system of magnetohydrodynamics for an incompressible ideal fluid,” Russ. J. Math. Phys., 20 (1), 56–67 (2013).MathSciNetCrossRefGoogle Scholar
  39. 39.
    M. J. Landman and P. G. Saffman, “The three-dimensional instability of strained vortices in a viscous fluid,” Phys. Fluids, 30, 2339–2342 (1987).CrossRefGoogle Scholar
  40. 40.
    W. F. Langford, “Hopf meets Hamilton under Whitney’s umbrella,” Solid Mech. Appl., 110, 157–165 (2003).MathSciNetzbMATHGoogle Scholar
  41. 41.
    H. N. Latter, H. Rein, and G. I. Ogilvie, “The gravitational instability of a stream of coorbital particles,” Mon. Not. R. Astron. Soc., 423, 1267–1276 (2012).CrossRefGoogle Scholar
  42. 42.
    W. Liu, J. Goodman, I. Herron, and H. Ji, “Helical magnetorotational instability in magnetized Taylor–Couette flow,” Phys. Rev. E, 74 (5), 056302 (2006).MathSciNetCrossRefGoogle Scholar
  43. 43.
    R. S. MacKay, “Movement of eigenvalues of Hamiltonian equilibria under non-Hamiltonian perturbation,” Phys. Lett. A, 155, 266–268 (1991).MathSciNetCrossRefGoogle Scholar
  44. 44.
    J. H. Maddocks and M. L. Overton, “Stability theory for dissipatively perturbed Hamiltonian systems,” Commun. Pure Appl. Math., 48, 583–610 (1995).MathSciNetCrossRefGoogle Scholar
  45. 45.
    D. H. Michael, “The stability of an incompressible electrically conducting fluid rotating about an axis when current flows parallel to the axis,” Mathematika, 1, 45–50 (1954).MathSciNetCrossRefGoogle Scholar
  46. 46.
    D. Montgomery, “Hartmann, Lundquist, and Reynolds: The role of dimensionless numbers in nonlinear magnetofluid behavior,” Plasma Phys. Control. Fusion, 35, B105–B113 (1993).CrossRefGoogle Scholar
  47. 47.
    G. I. Ogilvie and J. E. Pringle, “The nonaxisymmetric instability of a cylindrical shear flow containing an azimuthal magnetic field,” Mon. Not. R. Astron. Soc., 279, 152–164 (1996).CrossRefGoogle Scholar
  48. 48.
    G. I. Ogilvie and A. T. Potter, “Magnetorotational-type instability in Couette–Taylor flow of a viscoelastic polymer liquid,” Phys. Rev. Lett., 100, 074503 (2008).CrossRefGoogle Scholar
  49. 49.
    G. I. Ogilvie and M. R. E. Proctor, “On the relation between viscoelastic and magnetohydrodynamic flows and their instabilities,” J. Fluid Mech., 476, 389–409 (2003).MathSciNetCrossRefGoogle Scholar
  50. 50.
    J. W. S. Rayleigh, “On the dynamics of revolving fluids,” Proc. R. Soc. Lond. A, 93, 148–154 (1917).CrossRefGoogle Scholar
  51. 51.
    G. Rüdiger, M. Gellert, M. Schultz, and R. Hollerbach, “Dissipative Taylor–Couette flows under the influence of helical magnetic fields,” Phys. Rev. E, 82, 016319 (2010).CrossRefGoogle Scholar
  52. 52.
    G. Rüdiger, M. Gellert, M. Schultz, R. Hollerbach, and F. Stefani, “The azimuthal magnetorotational instability (AMRI),” Mon. Not. R. Astron. Soc., 438, 271–277 (2014).CrossRefGoogle Scholar
  53. 53.
    G. Rüdiger, L. Kitchatinov, and R. Hollerbach, Magnetic Processes in Astrophysics, Wiley-VCH (2013).Google Scholar
  54. 54.
    M. Seilmayer, V. Galindo, G. Gerbeth, T. Gundrum, F. Stefani, M. Gellert, G. Rüdiger, M. Schultz, and R. Hollerbach, “Experimental evidence for nonaxisymmetric magnetorotational instability in an azimuthal magnetic field,” Phys. Rev. Lett., 113, 024505 (2014).CrossRefGoogle Scholar
  55. 55.
    D. M. Smith, “The motion of a rotor carried by a flexible shaft in flexible bearings,” Proc. R. Soc. Lond. A, 142, 92–118 (1933).CrossRefGoogle Scholar
  56. 56.
    J. Squire and A. Bhattacharjee, “Nonmodal growth of the magnetorotational instability,” Phys. Rev. Lett., 113, 025006 (2014).CrossRefGoogle Scholar
  57. 57.
    F. Stefani, A. Gailitis, and G. Gerbeth, “Magnetohydrodynamic experiments on cosmic magnetic fields,” Z. Angew. Math. Mech., 88, 930–954 (2008).MathSciNetCrossRefGoogle Scholar
  58. 58.
    G. E. Swaters, “Modal interpretation for the Ekman destabilization of inviscidly stable baroclinic flow in the Phillips model,” J. Phys. Oceanogr., 40, 830–839 (2010).CrossRefGoogle Scholar
  59. 59.
    S. A. Thorpe,W. D. Smyth, and L. Li, “The efect of small viscosity and diffusivity on the marginal stability of stably stratified shear flows,” J. Fluid Mech., 731, 461–476 (2013).MathSciNetCrossRefGoogle Scholar
  60. 60.
    E. P. Velikhov, “Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field,” Sov. Phys. JETP-USSR, 9, 995–998 (1959).MathSciNetGoogle Scholar
  61. 61.
    M. Vishik and S. Friedlander, “Asymptotic methods for magnetohydrodynamic instability,” Quart. Appl. Math., 56, 377–398 (1998).MathSciNetCrossRefGoogle Scholar
  62. 62.
    V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients. V. 1 and 2, Wiley, New York (1975).Google Scholar
  63. 63.
    H. Ziegler, “Die Stabilitätskriterien der Elastomechanik,” Arch. Appl. Mech., 20, 49–56 (1952).zbMATHGoogle Scholar
  64. 64.
    R. Zou and Y. Fukumoto, “Local stability analysis of the azimuthal magnetorotational instability of ideal MHD flows,” Prog. Theor. Exp. Phys., 113J01 (2014).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Helmholtz-Zentrum Dresden RossendorfDresdenGermany

Personalised recommendations