Advertisement

Journal of Mathematical Sciences

, Volume 235, Issue 4, pp 392–454 | Cite as

On the Nature of Local Equilibrium in the Carleman and Godunov–Sultangazin Equations

  • O. A. Vasil’eva
  • S. A. Dukhnovskii
  • E. V. Radkevich
Article
  • 8 Downloads

Abstract

We consider one-dimensional Carleman and Godunov–Sultangazin equations and obtain local equilibrium conditions for solutions of the Cauchy problem with finite energy and periodic initial data. Moreover, we prove the exponential stabilization to the equilibrium state.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Boltzmann, “On the Maxwell method for derivation of equations of hydrodinamics from the kinetic gas theory,” In: Reports of Britain Association (1894). To the memory of L. Boltzmann [in Russian], 307–321, Nauka, Moscow (1984).Google Scholar
  2. 2.
    T. E. Broadwell, “Study of rarefied shear flow by the discrete velocity method,” J. Fluid Mech., 19, No. 3, 401–414 (1964).MathSciNetCrossRefGoogle Scholar
  3. 3.
    S. K. Godunov and U. M. Sultangazin, “On discrete models of the Boltzman kinetic equation,” Usp. Mat. Nauk, XXVI, No. 3 (159), 3–51 (1974).Google Scholar
  4. 4.
    O. V. Il’in, “Study of existence and stability of solutions of the Carleman kinetic system,” Zhurn. Vych. Mat. Mat. Fiz., 47, No. 12, 2076–2087 (2007).Google Scholar
  5. 5.
    A. Komech and E. Kopylova, Dispersion Decay and Scattering Theory, John Wiley & Sons, Naboken (2012).CrossRefGoogle Scholar
  6. 6.
    E. Kopylova, “On long-time decay for magnetic Schr¨odinger and Klein–Gordon equations,” Proc. Steklov Inst. Math., 278, 121–129 (2012).MathSciNetCrossRefGoogle Scholar
  7. 7.
    G. Nikolis and I. Prigozhin, Self-Organization in Nonequilibrium Systems (from Dissipative Structures to Ordering via Fluctuations) [in Russian], Mir, Moscow (1979).Google Scholar
  8. 8.
    E. V. Radkevich, Mathematical Issues in Nonequilibrium Processes [in Russian], Tamara Rozhkovskaya, Novosibirsk (2007).Google Scholar
  9. 9.
    E. V. Radkevich, “On the behavior of solutions of the Cauchy problem for the two-dimensional discrete kinetic equation at large time scales,” Sovrem. Mat. Fundam. Napravl., 47, 108–139 (2013).Google Scholar
  10. 10.
    O. A. Vasil’eva, S. A. Dukhnovskiy, and E. V. Radkevich, “On local equilibrium of the Carleman equation,” Probl. Mat. Anal., 78, 165–190 (2015).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • O. A. Vasil’eva
    • 1
  • S. A. Dukhnovskii
    • 1
  • E. V. Radkevich
    • 2
  1. 1.Moscow State University of Civil EngineeringMoscowRussia
  2. 2.M. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations