Journal of Mathematical Sciences

, Volume 235, Issue 4, pp 375–391 | Cite as

Nonlinear Integral Equations with Potential-Type Kernels on a Segment

  • S. N. AskhabovEmail author


We study various classes of nonlinear equations containing operators of potential type (Riesz potential). By the method of monotone operators in the Lebesgue spaces of real-valued functions Lp(a, b) we prove global theorems on the existence, uniqueness, estimates, and methods of construction of their solutions. We present applications that illustrate the results obtained.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. N. Askhabov, Singular Integral Equations and Equations of Convolution Type with Monotone Nonlinearity [in Russian], Maikop (2004).Google Scholar
  2. 2.
    S. N. Askhabov, Nonlinear Equations of Convolution Type [in Russian], Fizmatlit, Moscow (2009).Google Scholar
  3. 3.
    S. N. Askhabov, “Nonlinear equations with weight operators of potential type in Lebesgue spaces,” Vestn. Samar. Tekh. Univ. Ser. Fiz.-Mat., 4 (25), 160–164 (2011).CrossRefGoogle Scholar
  4. 4.
    S. N. Askhabov, “Approximate solution of nonlinear discrete equations of convolution type,” Sovr. Mat. Fundam. Naprav., 45, 18–31 (2012).Google Scholar
  5. 5.
    S. N. Askhabov, “Nonlinear integral equations with kernels of convolution type on a semiaxis,” Vladikavkaz. Mat. Zh., 15, No. 4, 3–11 (2013).MathSciNetzbMATHGoogle Scholar
  6. 6.
    H. Brezis and F. E. Browder, “Some new results about Hammerstein equations,” Bull. Am. Math. Soc. (N.S.), 80, 567–572 (1974).MathSciNetCrossRefGoogle Scholar
  7. 7.
    H. Brezis and F. E. Browder, “Nonlinear integral equations and systems of Hammerstein type,” Adv. Math., 18, 115–147 (1975).MathSciNetCrossRefGoogle Scholar
  8. 8.
    R. E. Edwards, Fourier Series. A Modern Introduction, Vols. 1, 2, Grad. Texts Math., 64, Springer-Verlag, New York–Heidelberg–Berlin (1979).Google Scholar
  9. 9.
    H. Gajewski, K. Gröger, and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin (1974).Google Scholar
  10. 10.
    R. I. Kachurovskiy, “Nonlinear monotone operators in Banach spaces,” Usp. Mat. Nauk, 23, No. 2, 121–168 (1968).MathSciNetGoogle Scholar
  11. 11.
    V. B. Moroz, “Hammerstein equations with kernels of Riesz potential type,”Abstr. Int. Conf. “Boundary-Value Problems, Special Functions, and Fractional Calculus,” Minsk (1996), pp. 249–254.Google Scholar
  12. 12.
    A. M. Nakhushev, Fractional Calculus and Its Applications [in Russian], Fizmatlit, Moscow (2003).zbMATHGoogle Scholar
  13. 13.
    A. D. Polyanin and A. V. Manzhirov, Handbook on Integral Equations [in Russian], Nauka, Moscow (1978).Google Scholar
  14. 14.
    D. Porter and D. Stirling, Integral Equations. A Practical Treatment, from Spectral Theory to Applications, Cambridge Univ. Press, Cambridge (1990).Google Scholar
  15. 15.
    S. G. Samko, A. A. Kilbas, and O. I. Marichev, Integrals and Derivatives of Fractional Order and Their Applications [in Russian], Minsk (1987).Google Scholar
  16. 16.
    M. M. Vaynberg, Variational Methods of Investigation of Nonlinear Operators [in Russian], Moscow (1956).Google Scholar
  17. 17.
    M. M. Vaynberg, Variational Method and Monotone Operators Method in Theory of Nonlinear Equations [in Russian], Nauka, Moscow (1972).Google Scholar
  18. 18.
    P. P. Zabreyko, A. I. Koshelev et al., Integral Equations [in Russian], Nauka, Moscow (1968).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chechen State UniversityGroznyRussia

Personalised recommendations