Advertisement

Journal of Mathematical Sciences

, Volume 234, Issue 5, pp 750–757 | Cite as

Lattice Points in the Four-Dimensional Ball

  • O. M. Fomenko
Article
Let r4(n) denote the number of representations of n as a sum of four squares. The generating function ζ4(s) is Epstein’s zeta function. The paper considers the Riesz mean
$$ {D}_{\rho}\left(x;{\zeta}_4\right)=\frac{1}{\Gamma \left(\rho +1\right)}\sum \limits_{n\le x}{\left(x-n\right)}^{\rho }{r}_4(n) $$
for an arbitrary fixed ρ > 0. The error term Δρ(x; ζ4) is defined by
$$ {D}_{\rho}\left(x;{\zeta}_4\right)=\frac{\uppi^2{x}^{2+\rho }}{\Gamma \left(\rho +3\right)}+\frac{x^{\rho }}{\Gamma \left(\rho +1\right)}{\zeta}_4(0)+{\Delta}_{\rho}\left(x;{\zeta}_4\right). $$
It is proved that
$$ {\Delta}_4\left(x;{\zeta}_4\right)=\Big\{{\displaystyle \begin{array}{ll}O\left({x}^{1/2+\rho +\varepsilon}\right)& \left(1<\rho \le 3/2\right),\\ {}O\left({x}^{9/8+\rho /4}\right)& \left(1/2<\rho \le 1\right),\\ {}O\left({x}^{5/4+\varepsilon}\right)& \left(0<\rho \le 1/2\right)\end{array}} $$
and
$$ {\Delta}_{1/2}\left(x;{\zeta}_4\right)=\Omega \left(x{\log}^{1/2}x\right). $$

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Landau, “Über die Anzahl der Gitterpunkte in gewissen Bereichen,” Nachr. Ges. Wiss. Göttingen, Math.–phys. Klasse, 687–771 (1912).Google Scholar
  2. 2.
    E. Landau, Ausgewählte Abhandlungen zur Gitterpunktlehre, Berlin (1962).Google Scholar
  3. 3.
    A. Walfisz, Weylsche Exponentialsummen in der Neueren Zahlentheorie, Berlin (1963).Google Scholar
  4. 4.
    S. D. Adhikari and Y.-F. S. Pétermann, “Lattice points in ellipsoids,” Acta Arithm., 59, 329–338 (1991).MathSciNetCrossRefGoogle Scholar
  5. 5.
    O. M. Fomenko, “Lattice points in many-dimensional balls,” Zap. Nauchn. Semin. POMI, 449, 261–274 (2016).Google Scholar
  6. 6.
    K. Chandrasekharan and R. Narasimhan, “Hecke’s functional equation and the average order of arithmetical functions,” Acta Arithm., 6, 487–503 (1961).MathSciNetCrossRefGoogle Scholar
  7. 7.
    K. Chandrasekharan and R. Narasimhan, “Functional equations with multiple gamma factors and the average order of arithmetical functions,” Ann. Math., 76, 93–136 (1962).MathSciNetCrossRefGoogle Scholar
  8. 8.
    O. M. Fomenko, “On Riesz means of the coefficients of Epstein’s zeta functions,” Zap. Nauchn. Semin. POMI, 458, 218–235 (2017).MathSciNetGoogle Scholar
  9. 9.
    Y.-K. Lau, “On the mean square formula for the error term for a class of arithmetical functions,” Monatsh. Math., 128, 111–129 (1999).MathSciNetCrossRefGoogle Scholar
  10. 10.
    F. Chamizo and H. Iwaniec, “On the sphere problem,” Rev. Mat. Iberoamericana, 11, 417–429 (1995).MathSciNetCrossRefGoogle Scholar
  11. 11.
    S. W. Graham and G. Kolesnik, Van der Corput’s Method for Exponential Sums (London Math. Soc. Lect. Notes, 126), Cambridge Univ. Press (1991).Google Scholar
  12. 12.
    O. M. Fomenko, “On the distribution of integral points on cones,” Zap. Nauchn. Semin. POMI, 383, 193–203 (2010).Google Scholar
  13. 13.
    Y.-K. Lau and K.-M. Tsang, “Large values of error terms of a class of arithmetical functions,” J. reine angew. Math., 544, 25–38 (2002).MathSciNetzbMATHGoogle Scholar
  14. 14.
    J.-L. Hafner, “On the representation of the summatory function of a class of arithmetical functions,” in: Analytic Number Theory, M. I. Knopp, ed. (Lect. Notes Math., 899) (1981), pp. 148–165.Google Scholar
  15. 15.
    H. L. Montgomery and R. C. Vaughan, “Hilbert’s inequality,” J. London Math. Soc. (2), 8, 73–82 (1974).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • O. M. Fomenko
    • 1
  1. 1.St. Petersburg Department of the Steklov Mathematical InstituteSt. PetersburgRussia

Personalised recommendations