Advertisement

Journal of Mathematical Sciences

, Volume 234, Issue 5, pp 737–749 | Cite as

On Riesz Means of the Coefficients of Epstein’s Zeta Functions

  • O. M. Fomenko
Article
  • 9 Downloads
Let rk(n) denote the number of lattice points on a k-dimensional sphere of radius \( \sqrt{n} \). The generating function
$$ {\zeta}_k(s)=\sum \limits_{n=1}^{\infty }{r}_k(n){n}^{-s},\kern0.5em k\ge 2, $$
is Epstein’s zeta function. The paper considers the Riesz mean of the type
$$ {D}_{\rho}\left(x;{\zeta}_3\right)=\frac{1}{\Gamma \left(\rho +1\right)}\sum \limits_{n\le x}{\left(x-n\right)}^{\rho }{r}_3(n), $$
where ρ > 0; the error term Δρ(x; ζ3) is defined by
$$ {D}_{\rho}\left(x;{\zeta}_3\right)=\frac{\uppi^{3/2}{x}^{\rho +3/2}}{\Gamma \left(\rho +5/2\right)}+\frac{x^{\rho }}{\Gamma \left(\rho +1\right)}{\zeta}_3(0)+{\Delta}_{\rho}\left(x;{\zeta}_3\right). $$
K. Chandrasekharan and R. Narasimhan (1962, MR25#3911) proved that
$$ {\Delta}_{\rho}\left(x;{\zeta}_3\right)=\Big\{{\displaystyle \begin{array}{ll}O\Big({x}^{1/2+\rho /2\Big)}& \left(\rho >1\right),\\ {}{\Omega}_{\pm}\left({x}^{1/2+\rho /2}\right)& \left(\rho \ge 0\right).\end{array}} $$
In the present paper, it is proved that
$$ {\Delta}_{\rho}\left(x;{\zeta}_3\right)=\Big\{{\displaystyle \begin{array}{ll}O\left(x\log x\right)& \left(\rho =1\right),\\ {}O\left({x}^{2/3+\rho /3+\varepsilon}\right)& \left(1/2<\rho <1\right),\\ {}O\left({x}^{3/4+\rho /4+\varepsilon}\right)& \left(0<\rho \le 1/2\right),\end{array}} $$

and the Riesz means of the coefficients of ζk(s), k ≥ 4, are studied.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. R. Heath-Brown, “Lattice points in the sphere,” in: Number Theory in Progress, Vol. 2, de Gruyter, Berlin (1999), pp. 883–892.Google Scholar
  2. 2.
    Y.-K. Lau and K.-M. Tsang, “Large values of error terms of a class of arithmetical functions,” J. reine angew. Math., 544, 25–38 (2002).MathSciNetzbMATHGoogle Scholar
  3. 3.
    O. M. Fomenko, “Lattice points in the circle and the sphere,” Zap. Nauchn. Semin. POMI, 418, 198–220 (2013).Google Scholar
  4. 4.
    K. Chandrasekharan and R. Narasimhan, “Functional equations with multiple gamma factors and the average order of arithmetical functions,” Ann. Math., 76, 93–136 (1962).MathSciNetCrossRefGoogle Scholar
  5. 5.
    F. Chamizo, “Lattice points in bodies of revolution,” Acta Arithm., 85, 265–277 (1998).MathSciNetCrossRefGoogle Scholar
  6. 6.
    K. Chandasekharan and R. Narasimhan, “Hecke’s functional equation and the average order of arithmetical functions,” Acta Arithm., 6, 487–503 (1961).MathSciNetCrossRefGoogle Scholar
  7. 7.
    S. Krupička, “On the number of lattice points in multidimensional convex bodies,” Czech. Math. J., 7, 524–552 (1957).MathSciNetzbMATHGoogle Scholar
  8. 8.
    E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Second edition revised by D. R. Heath-Brown, Clarendon Press, Oxford (1986).Google Scholar
  9. 9.
    K. Prachar, Primzahlverteilung, Berlin (1957).Google Scholar
  10. 10.
    E. Landau, Ausgewählte Abhandlungen zur Gitterpunktlehre, Berlin (1962).Google Scholar
  11. 11.
    F. Chamizo and H. Iwaniec, “On the sphere problem,” Rev. Mat. Iberoamer., 11, 417–429 (1995).MathSciNetCrossRefGoogle Scholar
  12. 12.
    Y.-K. Lau, “On the mean square formula for the error term for a class of arithmetical functions,” Mh. Math., 128, 111–129 (1999).MathSciNetCrossRefGoogle Scholar
  13. 13.
    K.-C. Tong, “On divisor problems. I, III,” Acta Math. Sinica, 5, 313–324 (1955); 6, 515–541 (1956).Google Scholar
  14. 14.
    O. M. Fomenko, “On the mean square of the error term for the Dedekind zeta functions,” Zap. Nauchn. Semin. POMI, 440, 187–204 (2015).Google Scholar
  15. 15.
    J. L. Hafner, “On the representation of the summatory functions of a class of arithmetical functions,” Lect. Notes Math., 899, 148–165 (1981).MathSciNetCrossRefGoogle Scholar
  16. 16.
    D. R. Heath-Brown, “The distribution and moments of the error term in the Dirichlet divisor problem,” Acta Arithm., 60, 389–415 (1992).MathSciNetCrossRefGoogle Scholar
  17. 17.
    A. Walfisz, Weylsche Exponentialsummen in der Neueren Zahlentheorie, Berlin (1963).Google Scholar
  18. 18.
    O. M. Fomenko, “Lattice points in many-dimensional balls,” Zap. Nauchn. Semin. POMI, 449, 261–274 (2016).Google Scholar
  19. 19.
    K. Ramachandra and A. Sankaranarayanan, “Hardy’s theorem for zeta functions of quadratic forms,” Proc. Indian Acad. Sci. (Math. Sci.), 106, 217–226 (1996).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • O. M. Fomenko
    • 1
  1. 1.St. Petersburg Department of the Steklov Mathematical InstituteSt. PetersburgRussia

Personalised recommendations