Advertisement

Journal of Mathematical Sciences

, Volume 234, Issue 5, pp 701–736 | Cite as

Weighted Modules and Capacities on a Riemann Surface

  • P. A. Pugach
  • V. A. Shlyk
Article
  • 11 Downloads

On a Riemann surface (in the broad sense of the word in the terminology of Hurwitz–Courant), the weighted capacity and module (with a Muckenhoupt weight) of a condenser with a finite number of plates are defined. The equality of the capacity and module of a condenser is proved, which solves a Dubinin problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Aseev and B. Yu. Sultanov, “Modules of polycondensers and isomorphisms of spaces of traces of continuous functions of the class \( {W}_n^1 \),” Preprint AN SSSR, Sib. Otd., Inst. Mat., Novosibirsk (1989).Google Scholar
  2. 2.
    G. V. Kuz’mina, “The general coefficient theorem of Jenkins and the method of modules of curve families,” Zap. Nauchn. Semin. POMI, 429, 140–156 (2014).Google Scholar
  3. 3.
    V. N. Dubinin, “Methods of geometric function theory in classical and modern problems for polynomials,” Usp. Mat. Nauk, 67, No. 4, 3–88 (2012).MathSciNetCrossRefGoogle Scholar
  4. 4.
    V. N. Dubinin, “Schwartz derivative and covering of arcs of a bundle of circles by holomorphic functions,” Mat. Zametki, 98, No. 6, 865–871 (2015).CrossRefGoogle Scholar
  5. 5.
    V. Dubinin, “Some unsolved problems about condenser capacities on the plane,” in: Complex Analysis and Dynamical Systems: New Trends and Open Problems, Birkhäuser (2018), pp. 81–92.Google Scholar
  6. 6.
    A. Hurwitz and R. Courant, Funktionentheorie [Russian translation], Mir, Moscow (1968).zbMATHGoogle Scholar
  7. 7.
    C. Stoilov, Lectures on Topological Principles in the Theory of Analytic Functions [in Russian], Nauka, Moscow (1964).Google Scholar
  8. 8.
    P. Pugach and V. Shlyk, “Moduli, capacity, BV-functions on the Riemann surfaces,” Lobachevskii J. Math., 38, No. 2, 338–351 (2017).MathSciNetCrossRefGoogle Scholar
  9. 9.
    M. Ohtsuka, Extremal Length and Precise Functions, Gakkōtosho (2003).Google Scholar
  10. 10.
    H. Federer, Geometric Measure Theory [Russian translation], Moscow (1987).Google Scholar
  11. 11.
    S. M. Nikol’skii, Approximation of Functions of Several Variables and Imbedding Theorems [in Russian], Nauka, Moscow (1977).Google Scholar
  12. 12.
    B. Fuglede, “Extremal length and functional completion,” Acta Math., 98, 171–219 (1957).MathSciNetCrossRefGoogle Scholar
  13. 13.
    L. K. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions [Russian translation], Novosibirsk (2002).Google Scholar
  14. 14.
    O. Forster, Riemann Surfaces [Russian translation], Moscow (1980).Google Scholar
  15. 15.
    W. P. Ziemer, “Extremal length and conformal capacity,” Trans. Amer. Math. Soc., 126, No. 3, 460–473 (1967).MathSciNetCrossRefGoogle Scholar
  16. 16.
    V. A. Zorich, Mathematical Analysis, Part I [in Russian], Moscow (1981).Google Scholar
  17. 17.
    M. A. Evgrafov, Analytic Functions [in Russian], Moscow (1968).Google Scholar
  18. 18.
    A. V. Sychev, Modules and Space Quasiconformal Mappings [in Russian], Nauka, Novosibirsk (1983).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Vladivostok Branch of the Russian Customs AcademyVladivostokRussia

Personalised recommendations