Advertisement

Journal of Mathematical Sciences

, Volume 234, Issue 5, pp 697–700 | Cite as

On Cubic Exponential Sums and Gauss Sums

  • N. V. Proskurin
Article
Let eq be a nontrivial additive character of a finite field 𝔽q of order q ≡ 1(mod 3) and let ψ be a cubic multiplicative character of 𝔽q, ψ(0) = 0. Consider the cubic Gauss sum and the cubic exponential sum
$$ G\left(\psi \right)=\sum \limits_{z\in {\mathbb{F}}_q}{e}_q(z)\psi (z),\kern0.5em C\left(\omega \right)=\sum \limits_{z\in {\mathbb{F}}_q}{e}_q\left(\frac{z^3}{\omega }-3z\right),\kern0.5em \omega \in {\mathbb{F}}_q,\kern1em \omega \ne 0. $$
It is proved that for all nonzero a, b ∈ 𝔽q,
$$ \frac{1}{q}\sum \limits_nC(an)C(bn)\psi (n)+\frac{1}{q}\psi (ab)G{\left(\psi \right)}^2=\overline{\psi}(ab)\psi \left(a-b\right)\overline{G\left(\psi \right)}, $$

where the summation runs over all nonzero n ∈ 𝔽q.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. V. Proskurin, “Convolutions of twisted Kloosterman sums,” Zap. Nauchn. Semin. POMI, 302, 96–106 (2003).Google Scholar
  2. 2.
    W. Duke and H. Iwaniec, “A relation between cubic exponential and Kloosterman sums,” Contemp. Math., 143, 255–258 (1993).MathSciNetCrossRefGoogle Scholar
  3. 3.
    J. Booher, A. Etropolski, and A. Hittson, “Evaluations of cubic twisted Kloosterman sheaves,” Int. J. Number Theory, 6, 1349–1365 (2010).MathSciNetCrossRefGoogle Scholar
  4. 4.
    K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Second ed. (Grad. Texts Math., 84), Springer-Verlag (1990).Google Scholar
  5. 5.
    D. J. Wright, “Cubic character sums of cubic polynomials,” Proc. Amer. Math. Soc., 100, No. 3, 409–413 (1987).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.St. Petersburg Department of the Steklov Mathematical InstituteSt. PetersburgRussia

Personalised recommendations