Journal of Mathematical Sciences

, Volume 234, Issue 5, pp 616–639 | Cite as

Linear-Fractional Invariance of Multidimensional Continued Fractions

  • V. G. Zhuravlev

The invariance of the simplex-karyon algorithm for expanding real numbers α = (α1, …, αd) in multidimensional continued fractions under linear-fractional transformations \( {\alpha}^{\prime }=\left({\alpha}_1^{\prime },\dots, {\alpha}_d^{\prime}\right)=U\left\langle \alpha \right\rangle \) with matrices U from the unimodular group GLd+1(ℤ) is established. For the transformed collections α, convergents of the best approximations are found.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. G. Zhuravlev, “The simplex-karyon algorithm for expansion in multidimensional continued fractions,” Tr. MIAN, 299, 283–303 (2017).Google Scholar
  2. 2.
    V. G. Zhuravlev, “Simplex-module algorithm for expansion of algebraic numbers in multidimensional continued fractions,” Zap. Nauchn. Semin. POMI, 449, 168–195 (2016).Google Scholar
  3. 3.
    V. G. Zhuravlev, “Two-dimensional approximations by the method of dividing toric tilings,” Zap. Nauchn. Semin. POMI, 440, 81–98 (2015).Google Scholar
  4. 4.
    V. G. Zhuravlev, “Differentiations of induced toric tilings and multidimensional approximations of algebraic numbers,” Zap. Nauchn. Semin. POMI, 445, 33–92 (2016).Google Scholar
  5. 5.
    V. Brun, “Algorithmes euclidiens pour trois et quatre nombres,” in: Treizième congrès des mathèmaticiens scandinaves (Helsinki, 18–23 août, 1957), Mercators Tryckeri, Helsinki (1958), pp. 45–64.Google Scholar
  6. 6.
    E. S. Selmer, “Continued fractions in several dimensions,” Nordisk Nat. Tidskr., 9, 37–43 (1961).MathSciNetzbMATHGoogle Scholar
  7. 7.
    A. Nogueira, “The three-dimensional Poincare continued fraction algorithm,” Isr. J. Math., 90, No. 1–3, 373–401 (1995).MathSciNetCrossRefGoogle Scholar
  8. 8.
    F. Schweiger, Multidimensional Continued Fractions, Oxford Univ. Press, New York (2000).zbMATHGoogle Scholar
  9. 9.
    V. Berthe and S. Labbe, “Factor complexity of S-adic words generated by the Arnoux–Rauzy–Poincare algorithm,” Adv. Appl. Math., 63, 90–130 (2015).MathSciNetCrossRefGoogle Scholar
  10. 10.
    P. Arnoux and S. Labbe, “On some symmetric multidimensional continued fraction algorithms,” arXiv:1508.07814, August (2015).Google Scholar
  11. 11.
    J. Cassaigne, “Un algorithme de fractions continues de complexité linéaire,” October 2015. DynA3S meeting, LIAFA, Paris, October 12th (2015).Google Scholar
  12. 12.
    I. M. Vinogradov, Elements of Number Theory [in Russian], fifth ed., Moscow (1952).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Vladimir State UniversityVladimirRussia

Personalised recommendations