Journal of Mathematical Sciences

, Volume 234, Issue 5, pp 598–607 | Cite as

Lemniscate Zone and Distortion Theorems for Multivalent Functions

  • V. N. DubininEmail author

The impact of the connectivity of some lemniscates of a multivalent function on the absolute value of this function or its derivative is considered.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. K. Hayman, Research Problems in Function Theory, The Athlone Press, London (1967).zbMATHGoogle Scholar
  2. 2.
    P. Erdos, “Some of my favorite unsolved problems,” in: A Tribute to Paul Erdos, Cambridge Univ. Press, Cambridge (1990), pp. 467–478.Google Scholar
  3. 3.
    A. Eremenko and L. Lempert, “An extremal problem for polynomials,” Proc. Amer. Math. Soc., 122, No. 1, 191–193 (1994).MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Eremenko, “A Markov-type inequality for arbitrary plane continua,” Proc. Amer. Math. Soc., 135, No. 5, 1505–1510 (2007).MathSciNetCrossRefGoogle Scholar
  5. 5.
    V. N. Dubinin, “A Markov-type inequality and a lower bound for the moduli of critical values of polynomials,” Dokl. Ross. Akad. Nauk, 451, No. 5, 495–497 (2013).MathSciNetzbMATHGoogle Scholar
  6. 6.
    V. Dubinin, “Four-point distortion theorem for complex polynomials,” Complex Var. Elliptic Eq., 59, No. 1, 59–66 (2014).MathSciNetCrossRefGoogle Scholar
  7. 7.
    V. N. Dubinin, “On an extremal problem for complex polynomials with constraints on their critical values,” Sib. Mat. Zh., 55, No. 1, 79–89 (2014).MathSciNetCrossRefGoogle Scholar
  8. 8.
    V. N. Dubinin, “Critical values and moduli of the derivative of a complex polynomial at its zeros,” Zap. Nauchn. Semin. POMI, 449, 60–68 (2016).Google Scholar
  9. 9.
    V. N. Dubinin, “An extremal problem for the derivative of a rational function,” Mat. Zametki, 100, No. 5, 732–738 (2016).MathSciNetCrossRefGoogle Scholar
  10. 10.
    V. N. Dubinin, “On the logarithmic energy of zeros and poles of a rational function,” Sib. Mat. Zh., 57, No. 6, 1255–1261 (2016).MathSciNetCrossRefGoogle Scholar
  11. 11.
    V. N. Dubinin, “A new version of circular symmetrization with applications to p-valent functions,” Mat. Sb., 203, No. 7, 79–94 (2012).MathSciNetCrossRefGoogle Scholar
  12. 12.
    V. N. Dubinin, “Circular symmetrization of condensers on Riemann surfaces,” Mat. Sb., 206, No. 1, 69–96 (2015).MathSciNetCrossRefGoogle Scholar
  13. 13.
    V. N. Dubinin and A. S. Afanas’eva-Grigor’eva, “On lemniscates of rational functions,” Dal′nevost. Mat. Zh., 17, No. 2, 201–209 (2017).MathSciNetGoogle Scholar
  14. 14.
    V. N. Dubinin, “Symmetrization of condensers and inequalities for functions multivalent in the disk,” Mat. Zametki, 94, No. 6, 846–856 (2013).MathSciNetCrossRefGoogle Scholar
  15. 15.
    V. N. Dubinin, “Distortion theorems for circumferentially mean p-valent functions,” Zap. Nauchn. Semin. POMI, 440, 43–56 (2015).Google Scholar
  16. 16.
    V. N. Dubinin, “Inequalities for moduli of the circumferentially mean p-valent functions,” Zap. Nauchn. Semin. POMI, 429, 44–54 (2014).Google Scholar
  17. 17.
    N. I. Akhiezer, Elements of the Theory of Elliptic Functions [in Russian], Nauka, Moscow (1970).Google Scholar
  18. 18.
    A. B. Bogatyrev, “Chebyshev representation of rational functions,” Mat. Sb., 201, No. 11, 19–40 (2010).MathSciNetCrossRefGoogle Scholar
  19. 19.
    A. B. Bogatyrev, How Many Zolotarev Fractions are There?, arXiv:1511.05346 (2015).Google Scholar
  20. 20.
    M. M. Ghashim, V. N. Malozemov, and G. Sh. Tamasian, Zolotarev Fractions [in Russian]. Seminar on Constructive Nonsmooth Analysis and Nondifferentiable Optimization “CNSA&NDO.” (2016).
  21. 21.
    A. Hurwitz and R. Courant, Funktionentheorie [Russian translation], Moscow (1968).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Far Eastern Federal University and Institute of Applied Mathematics of the FEB RASVladivostokRussia

Personalised recommendations