Journal of Mathematical Sciences

, Volume 233, Issue 6, pp 807–827 | Cite as

On the Stabilization Rate of Solutions of the Cauchy Problem for a Parabolic Equation with Lower-Order Terms

  • V. N. DenisovEmail author


The following Cauchy problem for parabolic equations is considered in the half-space \( \overline{D}={\mathrm{\mathbb{R}}}^N\times \left[0,\infty \right) \), N ≥ 3:
$$ {L}_1u\equiv Lu+c\left(x,t\right)u-{u}_t=0,\kern0.5em \left(x,t\right)\in D,\kern0.5em u\left(x,0\right)={u}_0(x),\kern0.5em x\in {\mathrm{\mathbb{R}}}^N. $$

It is proved that for any bounded and continuous in ℝN initial function u0(x), the solution of the above Cauchy problem stabilizes to zero uniformly with respect to x from any compact set K in ℝN either exponentially or as a power (depending on the estimate for the coefficient c(x, t) of the equation).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Bogachev, N. V. Krylov, M. Rekner, and S. V. Shaposhnikov, Fokker–Planck–Kolmogorov Equations [in Russian], NITs Regul. Khaot. Dinam., Moscow–Izhevsk (2013).Google Scholar
  2. 2.
    V. N. Denisov, “On the stabilization of solutions of the Cauchy problem for a parabolic equation with a lower-order term,” Differ. Uravn., 39, No. 4, 506–515 (2003).MathSciNetGoogle Scholar
  3. 3.
    V. N. Denisov, “On the behavior of solutions of parabolic equations at large time values,” Usp. Mat. Nauk, 60, No. 4, 145–212 (2005).CrossRefGoogle Scholar
  4. 4.
    V. N. Denisov, “Sufficient conditions for stabilization of solutions of the Cauchy problem for a nondivergent parabolic equation with lower-order terms,” Sovrem. Mat. Fundam. Napravl., 36, 61–71 (2010).Google Scholar
  5. 5.
    V. N. Denisov, “Stabilization of solutions of the Cauchy problem for a nondivergent parabolic equation,” Sovrem. Mat. Prilozh., 78, 17–49 (2012).Google Scholar
  6. 6.
    M. V. Fedoryuk, Ordinary Differential Equations. Vol. 1 [in Russian], Nauka, Moscow (1985).Google Scholar
  7. 7.
    A. Friedman, Partial Derivative Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs (1964).zbMATHGoogle Scholar
  8. 8.
    A. K. Gushchin, “Some estimates of solutions of boundary-value problems for the heat conduction equation in unbounded domain,” Tr. Mat. Inst. Steklova, 91, 5–18 (1967).Google Scholar
  9. 9.
    A. K. Gushchin, “On stabilization of solutions of a parabolic equation,” Tr. Mat. Inst. Steklova, 103, 51–57 (1968).MathSciNetzbMATHGoogle Scholar
  10. 10.
    A. K. Gushchin, “On the stabilization rate of solutions of the boundary-value problem for a parabolic equation,” Sibirsk. Mat. Zh., 10, No. 1, 43–57 (1969).Google Scholar
  11. 11.
    A. M. Il’in, A. S. Kalashnikov, and O. A. Oleynik, “Linear second-order equations of parabolic type,” Tr. Semin. im. I. G. Petrovskogo, 17, 9–193 (2001).Google Scholar
  12. 12.
    E. L. Ince, Ordinary Differential Equations [Russian translation], Faktorial Press, Moscow (2005).Google Scholar
  13. 13.
    L. D. Kudryavtsev, Mathematical Analysis. Vol. 1 [in Russian], Vysshaya Shkola, Moscow (1970).Google Scholar
  14. 14.
    V. Marić, Regular Variation and Differential Equations, Springer, Berlin (2000).CrossRefzbMATHGoogle Scholar
  15. 15.
    V. Marić and M. Tomić, “On Liouville Green (WKB) approximation for second order linear differential equations,” Differ. Integral Equ., 1, No. 3, 299–304 (1988).MathSciNetzbMATHGoogle Scholar
  16. 16.
    N. Meyers and J. Serrin, “The exterior Dirichlet problem for second order elliptic partial differential equations,” J. Math. Mech., 9, No. 4, 513–538 (1960).MathSciNetzbMATHGoogle Scholar
  17. 17.
    G. Sansone, Ordinary Differential Equations. Vol. 1 [Russian translation], Inostrannaya Literatura, Moscow (1953).Google Scholar
  18. 18.
    G. N. Watson, Bessel Function Theory. Vol. 1 [Russian translation], Inostrannaya Literatura, Moscow (1949).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.M. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations