Journal of Mathematical Sciences

, Volume 230, Issue 5, pp 818–821 | Cite as

Boundaries of Stability Domains for Equilibrium Points of Differential Equations with Parameters

  • M. G. Yumagulov
  • L. S. Ibragimova
  • I. Zh. Mustafina
Article
  • 6 Downloads

Abstract

We consider autonomous and periodic differential equations containing two scalar parameters and analyze the construction of boundaries of stability domains of equilibrium points for such equations in the plane of parameters. We indicate conditions under which a unique smooth boundary curve passes through a given point. We propose a scheme of approximate construction of this curve.

Keywords and phrases

autonomous system periodic system equilibrium point stability stability domain parameter 

AMS Subject Classification

34D20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. M. Amaral and L. F. C. Alberto, “Stability boundary characterization of nonlinear autonomous dynamical systems in the presence of a saddle-node equilibrium point,” Tend. Mat. Apl. Comput., 13, No. 2, 143–154 (2012).MathSciNetCrossRefGoogle Scholar
  2. 2.
    L. Cesari, Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, Springer-Verlag, Berlin–Göttingen–Heidelberg (1959).CrossRefMATHGoogle Scholar
  3. 3.
    H. D. Chiang and L. F. C. Alberto, Stability Regions of Nonlinear Dynamical Systems: Theory, Estimation, and Applications, Cambridge Univ. Press (2015).Google Scholar
  4. 4.
    M. A. Krasnosel’sky and M. G. Yumagulov, “A method of functionalization of parameters in the eigenvalue problem,” Dokl. Ross. Akad. Nauk, 365, No. 2, 162–164 (1999).Google Scholar
  5. 5.
    M. Roseau, Vibrations Non Linéaires et Théorie de la Stabilité, Springer-Verlag, Berlin–Heidelberg–New York (1966).MATHGoogle Scholar
  6. 6.
    V. A. Yakubovich and V. M. Starzhinsky, Linear Differential Equations with Periodic Coefficients and Their Applications [in Russian], Nauka, Moscow (1972).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. G. Yumagulov
    • 1
  • L. S. Ibragimova
    • 2
  • I. Zh. Mustafina
    • 1
  1. 1.Bashkir State UniversityUfaRussia
  2. 2.Bashkir State Agrarian UniversityUfaRussia

Personalised recommendations