Integrated Semigroups and C-Semigroups and their Applications
Article
First Online:
- 16 Downloads
Abstract
In this survey, some interesting generalizations of the theory of C0-semigroups and their applications are presented. The survey is divided into three parts: “Integrated semigroups,” “C-semigroups,” and “Applications.” Different approaches to the theory are discussed. The content presented is taken from articles of the last 20 years and also contains some results of the authors. Various applications are presented; most of them concern ill-posed Cauchy problems.
Keywords and phrases
semigroup integrated semigroup C-semigroup Cauchy problem differential equationAMS Subject Classification
47D60 47D62 65Y20Preview
Unable to display preview. Download preview PDF.
Notes
References
- 1.M. Adimy, “Bifurcation de Hopf locale par semi-groupes intégrés,” C. R. Acad. Sci. Paris Sér. I Math., 311, No. 7, 423–428, (1990).MathSciNetMATHGoogle Scholar
- 2.M. Adimy, “Integrated semigroups and delay differential equations,” J. Math. Anal. Appl., 177, No. 1, 125–134, (1993).MathSciNetMATHCrossRefGoogle Scholar
- 3.M. Adimy and Kh. Ezzinbi, “Équations de type neutre et semi-groupes intégrés,” C. R. Acad. Sci. Paris Sér. I Math., 318, No. 6, 529–534 (1994).MathSciNetMATHGoogle Scholar
- 4.M. Adimy and Kh. Ezzinbi, “Semi-groupes intégrés et équations différentielles á retard en dimension infinie,” C. R. Acad. Sci. Paris Sér. I Math., 323, No. 5, 481–486 (1996).MathSciNetMATHGoogle Scholar
- 5.N. U. Ahmed, “Optimal control for linear systems described by m times integrated semigroups,” Publ. Math. Debrecen, 50, Nos. 3–4, 273–285 (1997).Google Scholar
- 6.M. Akkar, H. R. Ameziane, and A. Blali, “C-semigroupes α-intégrés affiliés á des algébres d’opérateurs,” in: Operator Theory and Banach Algebras (Rabat, 1999), Theta, Bucharest (2003), pp. 11–21.Google Scholar
- 7.Sh. Al-Sharif, “C-semigroups and (P,Q)-summing operators,” Sci. Math. Jpn., 57, No. 2, 389–396 (2003).Google Scholar
- 8.Sh. Al-Sharif, “C-semigroups and integral operators,” Sci. Math. Jpn., 62, No. 2, 265–271 (2005).Google Scholar
- 9.Sh. Al-Sharif, “The Hille–Yosida inequality for C-semigroups and ideal norms,” Nonlinear Funct. Anal. Appl., 12, No. 2, 273–284 (2007).Google Scholar
- 10.Sh. Al-Sharif and R. Khalil, “On generators of positive C-semigroups and a note on compact C-semigroups,” Mat. Stud., 27, No. 2, 189–195 (2007).Google Scholar
- 11.S. M. A. Alsulami, “C-admissibility and analytic C-semigroups,” Nonlinear Anal., 74, No. 16, 5754–5758 (2011).MathSciNetMATHCrossRefGoogle Scholar
- 12.K. A. Ames and R. J. Hughes, “Structural stability for ill-posed problems in Banach space,” Semigroup Forum, 70, No. 1, 127–145 (2005).Google Scholar
- 13.W. Arendt, “Approximation of degenerate semigroups,” Taiwan. J. Math., 5, No. 2, 279–295 (2001).MathSciNetMATHCrossRefGoogle Scholar
- 14.W. Arendt, “Resolvent positive operators,” Proc. London Math. Soc. (3), 54, No. 2, 321–349 (1987).Google Scholar
- 15.W. Arendt, “Semigroups and evolution equations: functional calculus, regularity and kernel estimates. Evolutionary equations,” in: Handbook Differential Equations, Vol. 1, North-Holland, Amsterdam (2004), pp. 1–85.Google Scholar
- 16.W. Arendt, “Sobolev imbeddings and integrated semigroups,” in: Semigroup Theory and Evolution Equations (Delft, 1989), 29–40, Lect. Notes Pure Appl. Math., 135, Marcel Dekker, New York (1991).Google Scholar
- 17.W. Arendt, “Vector-valued Laplace transforms and Cauchy problems,” Israel J. Math., 59, No. 3, 327–352 (1987).MathSciNetMATHCrossRefGoogle Scholar
- 18.W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Monogr. Math., 96, Birkh¨auser, Basel (2001).Google Scholar
- 19.W. Arendt, O. El-Mennaoui, and V. Keyantuo, “Local integrated semigroups: Evolution with jumps of regularity,” J. Math. Anal. Appl., 186, No. 2, 572–595 (1994).MathSciNetMATHCrossRefGoogle Scholar
- 20.W. Arendt and A. Favini, “Integrated solutions to implicit differential equations,” Rend. Sem. Mat. Univ. Politec. Torino, 51, No. 4, 315–329 (1993).MathSciNetMATHGoogle Scholar
- 21.W. Arendt and H. Kellermann, “Integrated solutions of Volterra integro-differential equations and applications. Volterra integro-differential equations in Banach spaces and applications” Pitman Res. Notes Math. Ser., 190, 21–51 (1989).MATHGoogle Scholar
- 22.W. Arendt, F. Neubrander, and U. Schlotterbeck, “Interpolation of semigroups and integrated semigroups,” Semigroup Forum, 45, No. 1, 26–37 (1992).Google Scholar
- 23.A. Ashyralyev, J. Pastor, S. I. Piskarev, and H. A. Yurtsever, “Second-order equations in functional spaces: qualitative and discrete well-posedness,” Abstr. Appl. Anal., Art. ID 948321 (2015).Google Scholar
- 24.M. Bachar and O. Arino, “Integrated semigroup and linear ordinary differential equation with impulses. Dynamical systems and their applications in biology,” Fields Inst. Commun., 36, 17–31 (2003).MATHGoogle Scholar
- 25.M. Bachar and O. Arino, “Integrated semigroup associated to a linear delay differential equation with impulses,” Differ. Integral Equ., 17, No. 3–4, 407–442 (2004).MathSciNetMATHGoogle Scholar
- 26.M. Bachar, W. Desch, and Mardiyana, “A class of semigroups regularized in space and time,” J. Math. Anal. Appl., 314, 558–578 (2006).Google Scholar
- 27.E. G. Bajlekova, Fractional evolution equations in Banach spaces, Ph.D. Thesis, Eindhoven Univ. of Technology (2001).Google Scholar
- 28.A. Bakushinsky and A. Goncharsky, Ill-Posed Problems: Theory and Applications, Math. Appl., 301 (1994).Google Scholar
- 29.A. B. Bakushinsky, M. Yu. Kokurin, and V. V. Klyuchev, “A rate of convergence and error estimates for difference methods used to approximate solutions to ill-posed Cauchy problems in a Banach space,” Numer. Meth. Program., No. 7, 163–171 (2006).Google Scholar
- 30.A. B. Bakushinsky, M. Yu. Kokurin, and M. M. Kokurin, “On a class of finite difference methods for ill-posed Cauchy problems with noisy data,” J. Inverse Ill-Posed Probl., 18, No. 9, 959–977 (2010).MathSciNetMATHGoogle Scholar
- 31.A. B. Bakushinsky, M. Yu. Kokurin, and A. Smirnova, Iterative Methods for Ill-Posed Problems. An Introduction, Inverse Ill-Posed Problems, 54, Walter de Gruyter, Berlin (2011).Google Scholar
- 32.A. B. Bakushinsky, M. Yu. Kokurin, and S. K. Paymerov, “On error estimates of difference solution methods for ill-posed Cauchy problems in a Hilbert space,” J. Inverse Ill-Posed Probl., 16, No. 6, 553–565 (2008).MathSciNetMATHCrossRefGoogle Scholar
- 33.A. G. Baskakov, N. S. Kaluzhina, and D. M. Polyakov, “Slowly varying at infinity operator semigroups,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 7, 3–14 (2014).Google Scholar
- 34.B. Baumer and F. Neubrander, Existence and uniqueness of solutions of ordinary linear differential equations in Banach spaces, Preprint Louisiana State Univ. (1995).Google Scholar
- 35.L. Beilina, M. V. Klibanov, and M. Yu. Kokurin, “Adaptivity with relaxation for ill-posed problems and global convergence for a coefficient inverse problem,” J. Math. Sci. (N.Y.), 167, No. 3, 279–325 (2010).Google Scholar
- 36.A. Bobrowski, “Integrated semigroups and Trotter–Kato theorem,” Bull. Pol. Acad. Sci., 41, No. 4, 297–304 (1994).MathSciNetMATHGoogle Scholar
- 37.A. Bobrowski, On approximation of (1.A) semigroups by discrete semigroups, Preprint, Technical Univ. of Lublin (1997).Google Scholar
- 38.A. Bobrowski, “The Widder–Arendt theorem on inverting of the Laplace transform and its relationship with the theory of semigroups of operators,” Preprint, Rice University, Houston Texas (1997).Google Scholar
- 39.A. Bobrowski, “The Widder–Arendt theorem theorem on inverting of the Laplace transform and its relationship with the theory of semigroups of operators,” Meth. Funct. Anal. Topol., 3, No. 4, 1–34 (1997).MathSciNetMATHGoogle Scholar
- 40.A. Bobrowski, “Integrated semigroups and the Trotter–Kato theorem,” Bull. Pol. Acad. Sci. Math., 42, 297–304(1994).MathSciNetMATHGoogle Scholar
- 41.A. Bobrowski, “Generalized telegraph equation and the Sova–Kurtz version of the Trotter–Kato theorem,” Ann. Pol. Math., 64, 37–45 (1996).MathSciNetMATHCrossRefGoogle Scholar
- 42.A. Bobrowski, “On the Yosida approximation and the Widder–Arendt representation theorem,” Stud. Math., 124, 281–290 (1997).MathSciNetMATHCrossRefGoogle Scholar
- 43.N. Boussetila and F. Rebbani, “Optimal regularization method for ill-posed Cauchy problems,” Electron. J. Differ. Equ. Conf., No. 147 (2006).Google Scholar
- 44.K. Burrage and S. Piskarev, “Stochastic methods for ill-posed problems,” BIT Numer. Math, 40, No. 2, 226–240 (2000).MathSciNetMATHCrossRefGoogle Scholar
- 45.S. Busenberg and B. Wu, “Convergence theorems for integrated semigroups,” Differ. Integral Equ., 5, No. 3, 509–520 (1992).MathSciNetMATHGoogle Scholar
- 46.V. Cachia, “Convergence at the origin of integrated semigroups,” Stud. Math., 187, No. 3, 199–218 (2008).MathSciNetMATHCrossRefGoogle Scholar
- 47.V. Cachia, “Convergence at the origin of integrated semigroups,” arXiv:math/0404414. (2004).Google Scholar
- 48.V. Cachia, “Euler’s exponential formula for semigroups,” Semigroup Forum, 68, No. 1, 1–24 (2004).Google Scholar
- 49.D. Cao, X. Song, R. Rong, and H. Zhu, “The asymptotic behavior and strong or weak stability for C-semigroup,” Nanjing Daxue Xuebao Shuxue Bannian Kan, 22, No. 1, 107–114 (2005).Google Scholar
- 50.D. X. Cao, X. Q. Song, and R. Rong, “Laplace inverse transformation for n-time integrated C-semigroups,” J. Xuzhou Norm. Univ. Nat. Sci. Ed., 22, No. 1, 7–9 (2004).MathSciNetMATHGoogle Scholar
- 51.D. X. Cao, X. Q. Song, and C. X. Wang, “The pertubation theory for n times integrated Csemigroups,” Math. Practice Theory, 36, No. 1, 220–223 (2006).MathSciNetGoogle Scholar
- 52.V. Cataná, “The second order abstract Cauchy problem and integrated semigroups generated by matrix pseudo-differential operators,” An. Univ. Craiova Ser. Mat. Inform., 30, No. 1, 78–87 (2003).MathSciNetMATHGoogle Scholar
- 53.D. N. Chalishajar, “Controllability of singular system using α times integrated semigroups,” Bull. Calcutta Math. Soc., 95, No. 2, 95–100 (2003).MathSciNetMATHGoogle Scholar
- 54.J.-C. Chang and S.-Y. Shaw, “Powers of generators and Taylor expansions of integrated semigroups of operators,” Taiwan. J. Math., 10, No. 1, 101–115 (2006).MathSciNetMATHCrossRefGoogle Scholar
- 55.J.-C. Chang and S.-Y. Shaw, “Optimal and nonoptimal rates of approximation for integrated semigroups and cosine functions,” J. Approx. Theory, 90, No. 2, 200–223 (1997).MathSciNetMATHCrossRefGoogle Scholar
- 56.Y.-H. Chang and C.-H. Hong, “Relative bounded perturbation of abstract Cauchy problem,” Far East J. Math. Sci., 29, No. 3, 555–575 (2008).MathSciNetMATHGoogle Scholar
- 57.J.-C. Chen, N. V. Minh, and S.-Y. Shaw, “C-semigroups and almost periodic solutions of evolution equations,” J. Math. Anal. Appl., 298, No. 2, 432–445 (2004).MathSciNetMATHCrossRefGoogle Scholar
- 58.C. Chen and X. Q. Song, “Asymptotic almost periodic motions of C-semigroups,” Acta Anal. Funct. Appl., 11, No. 3, 240–245 (2009).MathSciNetMATHGoogle Scholar
- 59.C. Chen and X. Q. Song, “Weakly asymptotically almost periodic motions of C-semigroups,” J. Syst. Sci. Math. Sci., 29, No. 5, 657–662 (2009).MathSciNetMATHGoogle Scholar
- 60.C. Chen, X. Q. Song, and X. M. Li, “The self-adjoint solution of Lyapunov’s equation of C-semigroups and its stability,” Nanjing Daxue Xuebao Shuxue Bannian Kan, 25, No. 1, 86–93 (2008).Google Scholar
- 61.J.-Ch. Chen, N. V. Minh, and S.-Y. Shaw, “C-semigroups and almost periodic solutions of evolution equations,” J. Math. Anal. Appl., 298, No. 2, 432–445 (2004).MathSciNetMATHCrossRefGoogle Scholar
- 62.W. Zh. Chen, “A Freud type estimate for probabilistic representation formulas for C-semigroups,” Xiamen Daxue Xuebao Ziran Kexue Ban, 33, No. 3, 279–285 (1994).Google Scholar
- 63.W. Zh. Chen, “A representation formula for C-infinitesimal generators,” Xiamen Daxue Xuebao Ziran Kexue Ban, 32, No. 2, 135–140 (1993).Google Scholar
- 64.W. Zh. Chen, “A saturation theorem for probabilistic representations of C-semigroups,” Xiamen Daxue Xuebao Ziran Kexue Ban, 34, No. 1, 1–6 (1995).Google Scholar
- 65.W. Zh. Chen, “Shisha–Mond type estimates for probabilistic representations of C-semigroups,” Xiamen Daxue Xuebao Ziran Kexue Ban, 32, No. 4, 391–396 (1993).Google Scholar
- 66.W. Zh. Chen, “The exponential-type representation formulas for C-semigroups,” Approx. Theory Appl. (N.S.), 11, No. 1, 43–53 (1995).Google Scholar
- 67.Chen Chuang and Li Miao, “On fractional resolvent operator functions,” Semigroup Forum, 80, 121–142 (2010).MathSciNetMATHCrossRefGoogle Scholar
- 68.Z. Q. Chen and H. M. Liu, “Vector-valued Laplace transforms and right continuous integral semigroups,” Acta Math. Sci., 16, No. 1, 15–22 (1996).MathSciNetMATHCrossRefGoogle Scholar
- 69.W. Chojnacki. “Group representations of bounded cosine functions,” J. Rein. Angew. Math., 478, 61–84 (1996).MathSciNetMATHGoogle Scholar
- 70.W. Chojnacki, “On group decompositions of bounded cosine sequences,” Stud. Math., 181, No. 1, 61–85 (2007).MathSciNetMATHCrossRefGoogle Scholar
- 71.I. Cioranescu, “A generation result for C-regularized semigroups. Semigroups of linear and nonlinear operations and applications” (Cura,cao, 1992), 121–128, Kluwer Acad. Publ., Dordrecht (1993).Google Scholar
- 72.I. Cioranescu, “On a class of C-regularized semigroups. Evolution equations, control theory, and biomathematics” (Han sur Lesse, 1991), Lecture Notes in Pure and Appl. Math., 155, 45–50, Dekker, New York (1994).Google Scholar
- 73.I. Cioranescu, V. Keyantuo, “C-semigroups: Generation and analyticity. Generalized functions linear and nonlinear problems” (Novi Sad, 1996), Integral Transform. Spec. Funct., 6, No. 1-4, 15–25 (1998).Google Scholar
- 74.J. C. R. Claeyssen and V. Schuchman, “Evolution equations of higher order in Banach spaces,” Appl. Anal., 72, No. 3–4, 459–468 (1999).MathSciNetMATHCrossRefGoogle Scholar
- 75.J. C. R. Claeyssen and V. Schuchman, “On the minimal extension of C 0-semigroups for secondorder damped equations,” J. Math. Anal. Appl., 211, No. 1, 213–222 (1997).MathSciNetCrossRefGoogle Scholar
- 76.J. C. R. Claeyssen and V. Schuchman, “Smooth dynamical solution for the damped second-order equation,” Comput. Appl. Math., 17, No. 2, 121–134 (1998).MathSciNetMATHGoogle Scholar
- 77.W. L. Conradie and N. Sauer, “Empathy, C-semigroups, and integrated semigroups. Evolution equations” (Baton Rouge, LA, 1992), Lecture Notes in Pure and Appl. Math., 168, 123–132 Dekker, New York (1995).Google Scholar
- 78.Yu. L. Dalecky and N. Yu. Goncharuk, “Random operator functions defined by stochastic differential equations,” In: Measures and Differential Equations in Infinite-Dimensional Space, Proc. Vth Vilnius Conf. Prob. Theory and Math. Stat., 1, 433–445 (1990).Google Scholar
- 79.Yu. L. Dalecky and N. Yu. Goncharuk, “Supplement to Chapter VII, Stochastic regularization of the ill-posed abstract parabolic problem,” In: Measures and Differential Equations in Infinite-Dimensional Space, by Yu. L. Dalecky and S. V. Fomin with additional material by V. R. Steblovskaya, Yu. V. Bogdansky, and N. Yu. Goncharuk (translated from the Russian), Kluwer Academic Publisher Group, Dordrecht 1991, p. 323–333.Google Scholar
- 80.G. Da Prato, “R-semigruppi analitici ed equazioni di evoluzione in L p” (Italian), Ric. Mat., 16, 233–249 (1967).MATHGoogle Scholar
- 81.G. Da Prato, “Regolarizzazione di alcuni semigruppi distribuzioni,” (Italian 1966), In: Atti del Convegno su le Equazioni alle Derivate Parziali (Nervi, 1965), Edizioni Cremonese, Rome, pp. 52–54.Google Scholar
- 82.G. Da Prato, “Semigruppi regolarizzabili,” (Italian) Ricerche Mat., 15, 223–248 (1966).Google Scholar
- 83.G. Da Prato, “Semigruppi di crescenza n,” Ann. Scuola Norm. Super. Pisa Sci. Fis. Mat., 20, No. 4, 753–782 (1966).MathSciNetMATHGoogle Scholar
- 84.G. Da Prato and U. Mosco, “Regolarizzazione dei semigruppi distribuzioni analitici” (Italian), Ann. Scuola Norm. Sup. Pisa (3), 19, 563–576 (1965).Google Scholar
- 85.E. B. Davies and M. M. H. Pang, “The Cauchy problem and a generalization of the Hille–Yosida theorem,” Proc. London Math. Soc. (3), 55, No. 1, 181–208 (1987).Google Scholar
- 86.C. R. Day, “Spectral mapping theorems for fractionally integrated semigroups,” Thesis (Ph.D.), University of South Carolina (1992), 37 pp.Google Scholar
- 87.C. R. Day, “Spectral mapping theorem for integrated semigroups,” Semigroup Forum, 47, No. 3, 359–372 (1993).Google Scholar
- 88.Sh. Q. Du and Q. R. Liu, “The relations between the spectra of C-semigroups and the spectra of their generators” (Chinese), Pure Appl. Math. (Xi’an), 11, No. 1, 56–60 (1995).Google Scholar
- 89.A. Ducrot, P. Magal, and K. Prevost, “Integrated semigroups and parabolic equations, Part I: Linear perturbation of almost sectorial operators,” J. Evol. Equ., 10, No. 2, 263–291 (2010).MathSciNetMATHCrossRefGoogle Scholar
- 90.O. El-Mennaoui, “Asymptotic behaviour of integrated semigroups,” J. Comput. Appl. Math., 54, No. 3, 351–369 (1994).MathSciNetCrossRefGoogle Scholar
- 91.Huang Falun and Huang Tingwen, “Local C-cosine family theory and application,” Chin. Ann. Math., Ser. B, 16, No. 2, 213–232 (1995).Google Scholar
- 92.H. O. Fattorini, Second-Order Linear Diferential Equations in Banach Spaces, North-Holland, Amsterdam (1985).Google Scholar
- 93.V. E. Fedorov, “A class of second-order equations of Sobolev type and degenerate groups of operators,” Vestn. Chelyab. Gos. Univ. Mat. Mekh. Inform., No. 26(13), 59–75, 122 (2011).Google Scholar
- 94.V. E. Fedorov, “Properties of pseudoresolvents and conditions for the existence of degenerate operator semigroups,” Vestn. Chelyab. Gos. Univ. Mat. Mekh. Inform., No. 20(11), 12–19, 153 (2009).Google Scholar
- 95.V. E. Fedorov, “Holomorphic operator semigroups with strong degeneration,” Vestn. Chelyab. Gos. Univ. Mat. Mekh. Inform., No. 6(10), 68–74, 138 (2008).Google Scholar
- 96.V. E. Fedorov, “Holomorphic resolving semigroups of Sobolev-type equations in locally convex spaces,” Mat. Sb., 195, No. 8, 131–160 (2004).MathSciNetMATHCrossRefGoogle Scholar
- 97.V. E. Fedorov, “Application of the theory of degenerate semigroups of operators to the study of initial-boundary value problems,” Sovrem. Mat. Prilozh. No. 9, 164–169 (2003).Google Scholar
- 98.V. E. Fedorov, “The Yosida theorem and solution groups of Sobolev-type equations in locally convex spaces,” Vestn. Chelyab. Univ. Ser. 3 Mat. Mekh. Inform., No. 3(9), 197–214 (2003).Google Scholar
- 99.V. E. Fedorov, “On a generalization of the Phillips formula,” In: Mathematics. Mechanics. Information science [in Russian], Chelyab. Gos. Univ., Chelyabinsk (2006), pp. 211–219.Google Scholar
- 100.V. E. Fedorov, “A generalization of the Hille–Yosida theorem to the case of degenerate semigroups in locally convex spaces,” Sib. Mat. Zh, 46, No. 2, 426–448 (2005).MathSciNetMATHCrossRefGoogle Scholar
- 101.V. E. Fedorov, “Strongly holomorphic groups of Sobolev-type linear equations in locally convex spaces,” Differ. Uravn., 40, No. 5, 702–712, 720 (2004).Google Scholar
- 102.V. E. Fedorov, “Relaxed solutions of a Sobolev-type linear equation and semigroups of operators,” Izv. Ross. Akad. Nauk Ser. Mat., 67, No. 4, 171–188 (2003).MathSciNetCrossRefGoogle Scholar
- 103.V. E. Fedorov, “Units of degenerate analytic operator semigroups and relative p-sectoriality,” In: Sobolev-type equations [in Russian], Chelyab. Gos. Univ., Chelyabinsk (2002), pp. 138–155.Google Scholar
- 104.V. E. Fedorov, “On the smoothness of solutions of linear Sobolev-type equations,” Differ. Uravn., 37, No. 12, 1646–1649, 1726 (2001).Google Scholar
- 105.V. E. Fedorov, “Degenerate strongly continuous semigroups of operators,” Algebra Anal., 12, No. 3, 173–200 (2000).MathSciNetGoogle Scholar
- 106.V. E. Fedorov, “Degenerate strongly continuous groups of operators,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 3, 54–65 (2000).Google Scholar
- 107.V. E. Fedorov and P. N. Davydov, “On nonlocal solutions of semilinear equations of the Sobolev type,” Differ. Equ., 49, No. 3, 326–335 (2013).MathSciNetMATHCrossRefGoogle Scholar
- 108.V. E. Fedorov and P. N. Davydov, “Global solvability of some Sobolev-type semilinear equations,” Vestn. Chelyab. Gos. Univ. Mat. Mekh. Inform., No. 23(12), 80–87, 134 (2010).Google Scholar
- 109.V. E. Fedorov and E. A. Omel’chenko, “Inhomogeneous linear equations of Sobolev type with delay, Sib. Mat. Zh., 53, No. 2, 418–429 (2012).Google Scholar
- 110.V. E. Fedorov and M. V. Plekhanova, “Optimal control of Sobolev-type linear equations,” Differ. Uravn., 40, No. 11, 1548–1556, 1583 (2004).Google Scholar
- 111.V. E. Fedorov and O. A. Ruzakova, “On the solvability of perturbed Sobolev-type equations,” Algebra Anal., 20, No. 4, 189–217 (2008).MathSciNetMATHGoogle Scholar
- 112.V. E. Fedorov and O. A. Ruzakova, “One- and two-dimensional controllability of Sobolev-type equations in Banach spaces,” Mat. Zametki, 74, No. 4, 618–628 (2003).MathSciNetMATHCrossRefGoogle Scholar
- 113.V. E. Fedorov and O. A. Ruzakova, “One-dimensional controllability of Sobolev-type linear equations in Hilbert spaces,” Differ. Uravn., 38, No. 8, 1137–1139, 1152 (2002).Google Scholar
- 114.V. E. Fedorov and O. A. Ruzakova, “Controllability of Sobolev-type linear equations with relatively p-radial operators,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 7, 54–57 (2002).Google Scholar
- 115.V. E. Fedorov and M. A. Sagadeeva, “Solutions, bounded on the line, of Sobolev-type linear equations with relatively sectorial operators,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 4, 81–84 (2005).Google Scholar
- 116.V. E. Fedorov and B. Shklyar, “Exact null controllability of degenerate evolution equations with scalar control,” Mat. Sb., 203, No. 12, 137–156 (2012).MathSciNetMATHCrossRefGoogle Scholar
- 117.V. E. Fedorov and A. V. Urazaeva, “An inverse problem for linear Sobolev type equations,” J. Inverse Ill-Posed Probl., 12, No. 4, 387–395 (2004).MathSciNetMATHCrossRefGoogle Scholar
- 118.V. E. Fedorov, A. V. Panov, and A. S. Karabaeva, “Symmetries of a class of quasilinear equations of pseudoparabolic type: invariant solutions,” Vestn. Chelyab. Gos. Univ. Mat. Mekh. Inform., No. 26(15), 90–111, 141 (2012).Google Scholar
- 119.A. Filinkov and I. Maizurna, “Integrated solutions of stochastic evolution equations with additive noise,” Bull. Austral. Math. Soc., 64, No. 2, 281–290 (2001).MathSciNetMATHCrossRefGoogle Scholar
- 120.J. Fountain and V. Gould, “Idempotent bounded C-semigroups,” Monatsh. Math., 117, No. 3–4, 237–254 (1994).MathSciNetMATHCrossRefGoogle Scholar
- 121.J. E. Galé, M. M. Martinez, and P. J. Miana, “Katznelson–Tzafriri type theorem for integrated semigroups,” J. Operator Theory, 69, No. 1, 59–85 (2013).MathSciNetMATHCrossRefGoogle Scholar
- 122.D-Zh. Gao, “The Lumer–Phillips theorems for integrated semigroups,” Acta Anal. Funct. Appl., 3, No. 4, 294–299 (2001).Google Scholar
- 123.D.-Zh. Gao, “On representation of integrated semigroups and application to abstract integrodifferential equation,” Acta Anal. Funct. Appl., 4, No. 4, 333–342 (2002).MathSciNetMATHGoogle Scholar
- 124.M. Gao, “C-well-posedness of the complete second order abstract Cauchy problem and applications,” Acta Math. Sin. (Engl. Ser.), 15, No. 4, 535–548 (1999).MathSciNetMATHCrossRefGoogle Scholar
- 125.M. Gao, “Local C-semigroups and local C-cosine functions,” Acta Math. Sci. (English Ed.), 19, No. 2, 201–213 (1999).MathSciNetMATHCrossRefGoogle Scholar
- 126.M. Gao, “Holomorphic integrated mild C-existence families,” Acta Math. Sci. (English Ed.), 18, No. 1, 63–73 (1998).MathSciNetMATHCrossRefGoogle Scholar
- 127.M. Gao, “Mild integrated C-existence families and abstract Cauchy problems,” Northeast. Math. J., 14, No. 1, 95–104 (1998).MathSciNetMATHGoogle Scholar
- 128.X. Genqi and F. Dexing, “Some properties of integrated besemigroups,” Acta Math. Sci. Ser. B. Engl. Ed., 21B(1), 50–60 (2001).MATHGoogle Scholar
- 129.J. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, Oxford (1985).MATHGoogle Scholar
- 130.F. Z. Gong and Q. R. Liu, “C-semigroups and C 0-semigroups,” Pure Appl. Math. (Xi’an), 12, No. 1, 78–80 (1996).Google Scholar
- 131.Charles W. Groetsch, “Stable approximate evaluation of unbounded operators,” Lecture Notes in Math., 1894, Springer, Berlin (2007).Google Scholar
- 132.R. Grimmer and J. H. Liu, “Integrated semigroups and integrodifferential equations,” Semigroup Forum, 48, No. 1, 79–95 (1994).Google Scholar
- 133.G. Greiner and M. M¨uller, “The spectral mapping theorem for integrated semigroups,” Semigroup Forum, 47, No. 1, 115–122 (1993).Google Scholar
- 134.X. H. Gu and F. Huang, “Characterization of almost automorphic C-semigroups and S p-almost periodic C-semigroups,” Sichuan Daxue Xuebao (Chinese), 38, No. 2, 137–140 (2001).Google Scholar
- 135.X. Gu, M. Li, and F. Huang, “Almost periodicity of C-semigroups, integrated semigroups and C-cosine functions,” Stud. Math., 150, No. 2, 189–200 (2002).MathSciNetMATHCrossRefGoogle Scholar
- 136.X. J. Gui and Q. R. Liu, “The relation between C-semigroups and C 0-semigroups,” Pure Appl. Math. (Xi’an), 9, No. 1, 47–50 (1993).Google Scholar
- 137.D. Guidetti, B. Karasozen, and S. Piskarev, “Approximation of abstract differential equations,” J. Math. Sci., Vol. 122, No. 2, 3013–3054 (2004).MathSciNetMATHCrossRefGoogle Scholar
- 138.S. Guozheng, “α times integrated semigroups and abstract Cauchy problem,” Acta Math. Sinica, 42, No. 4, 757–762 (1999).MathSciNetMATHGoogle Scholar
- 139.K. S. Ha, “Spectral mapping theorems for exponentially bounded C-semigroups in Banach spaces. Semigroups and differential operators,” (Oberwolfach, 1988), Semigroup Forum, 38, No. 2, 215–221 (1989).Google Scholar
- 140.K. S. Ha, J. H. Kim, and J. K. Kim, “Linear abstract Cauchy problem associated with an exponentially bounded C-semigroup in a Banach space,” Bull. Korean Math. Soc., 27, No. 2, 157–164 (1990).MathSciNetMATHGoogle Scholar
- 141.Z. B. Han, Y. Z. Huang, and M. Jian, “Inverse problems for equations of parabolic type. Perspectives in mathematical sciences,” Interdiscip. Math. Sci., 9, 1–21, World Scientific Publishing Co. (2010).Google Scholar
- 142.M. He, “Differentiability with respect to parameters of integrated semigroups. Direct and inverse problems of mathematical physics,” (Newark, DE, 1997), Int. Soc. Anal. Appl. Comput., 5, 125–135, Kluwer Acad. Publ., Dordrecht (2000).Google Scholar
- 143.M. He, “Integrated semigroups and vibrating string problem,” Appl. Anal., 68, No. 1-2, 109–120 (1998).MathSciNetMATHCrossRefGoogle Scholar
- 144.M. He, “On continuity in parameter of integrated semigroups. Dynamical systems and differential equations,” (Wilmington, NC, 2002), Discrete Contin. Dyn. Syst., suppl., 403–412 (2003).Google Scholar
- 145.M. Helil and M. Rixit, “Integrated semigroups and well-posedness of several queueing models,” J. Xinjiang Univ. Natur. Sci. (Chinese), 19, No. 4, 394–400 (2002).MathSciNetGoogle Scholar
- 146.M. Hieber, “L p spectra of pseudodifferential operators generating integrated semigroups,” Trans. Am. Math. Soc., 347, No. 10, 4023–4035 (1995).MathSciNetMATHGoogle Scholar
- 147.M. Hieber, “Integrated semigroups and differential operators on L p spaces,” Math. Ann., 291, No. 1, 1–16 (1991).MathSciNetMATHCrossRefGoogle Scholar
- 148.M. Hieber, “Integrated semigroups and the Cauchy problem for systems in L p spaces,” J. Math. Anal. Appl., 162, No. 1, 300–308 (1991).MathSciNetMATHCrossRefGoogle Scholar
- 149.M. Hieber, “Laplace transforms and α times integrated semigroups,” Forum Math., 3, No. 6, 595–612 (1991).MathSciNetMATHGoogle Scholar
- 150.M. Hieber, Holderriech, and F. Neubrander, “Regularized semigroups and systems of linear partial differential equations,” Ann. Scu. Norm. Super. Pisa, 19, No. 3, 363–379 (1992).Google Scholar
- 151.E. Hille and R. S. Phillips, “Functional analysis and semigroups,” Am. Math. Soc. Providence, Rhode Island (1957).Google Scholar
- 152.R. H. W. Hoppe, “Discrete approximations of cosine operator functions. I,” SIAM J. Numer. Anal., 19, 1110–1128 (1982).MathSciNetMATHCrossRefGoogle Scholar
- 153.Zh. Hu and Zh. Jin, “Hille–Yosida type theorems for O(ω(t)) n times integrated semigroups,” Nonlinear Anal., 71, No. 1-2, 521–530 (2009).Google Scholar
- 154.M. Hu, X. Q. Song, W. Wei, and X. Z. Zhang, “Representation theorem of n times integrated C-semigroups,” J. Shandong Univ. Sci. Technol. Nat. Sci., 23, No. 4, 89–91 (2004).MathSciNetGoogle Scholar
- 155.Y. Z. Huang, “Modified quasi-reversibility method for final value problems in Banach spaces,” J. Math. Anal. Appl., 340, 757–769 (2008).MathSciNetMATHCrossRefGoogle Scholar
- 156.Y. Z. Huang and Z. Quan, “Regularization for ill-posed Cauchy problems associated with generators of analytic semigroups,” J. Differ. Equ., 203, 38–54 (2004).MathSciNetMATHCrossRefGoogle Scholar
- 157.Y. Z. Huang and Z. Quan, “Regularization for a class of ill-posed Cauchy problems,” Proc. Am. Math. Soc., 133, No. 10, 3005–3012 (2006).MathSciNetMATHCrossRefGoogle Scholar
- 158.Y. Z. Huang and Z. Quan, “Weak regularization for a class of ill-posed Cauchy problems,” Acta Math. Sci., 26B, No. 3, 483–490 (2006).MathSciNetMATHCrossRefGoogle Scholar
- 159.Z. Huang and H. Wang, “The integrated C-semigroup and its spectral mapping theorem,” Nanjing Daxue Xuebao Ziran Kexue Ban, 32, No. 3, 369–377 (1996).Google Scholar
- 160.R. J. Hughes, “Semigroups of unbounded linear operators in Banach space,” Trans. Am. Math. Soc., V. 230, 113–145 (1977).Google Scholar
- 161.N. D. Ivanova, V. E. Fedorov, and K. M. Komarova, “The nonlinear inverse problem for the Oskolkov system linearized in a neighborhood of a stationary solution,” Vestn. Chelyab. Gos. Univ. Mat. Mekh. Inform., No. 26(15), 49–70, 140 (2012).Google Scholar
- 162.M. Jackson and T. Stokes, “An invitation to C-semigroups,” Semigroup Forum, 62, No. 2, 279–310 (2001).Google Scholar
- 163.D. H. Jeong, J. Y. Park, and J.-W. Yu, “Exponentially equi-continuous C-semigroups in locally convex space,” J. Korean Math. Soc., 26, No. 1, 1–15 (1989).MathSciNetMATHGoogle Scholar
- 164.Y. F. Jia and H. X. Cao, “Characterization of exponentially bounded C-semigroups by infinitesimal generators,” J. Gansu Univ. Technol., 29, No. 2, 121–123 (2003).MathSciNetMATHGoogle Scholar
- 165.C. Kaiser, “Integrated semigroups and linear partial differential equations with delay,” J. Math. Anal. Appl., 292, No. 2, 328–339 (2004).MathSciNetMATHCrossRefGoogle Scholar
- 166.C. Kaiser and L. Weis, “Perturbation theorems for α times integrated semigroups,” Arch. Math., (Basel), 81, No. 2, 215–228 (2003).Google Scholar
- 167.S. Kalabušić and F. Vajzović, “Exponential formula for one-time integrated semigroups,” Novi Sad J. Math., 33, No. 2, 77–88 (2003).MathSciNetMATHGoogle Scholar
- 168.S. Kantorovitz, “Semigroups of operators and spectral theory,” Pitman Res. Notes Math. Ser., 330 (1995).Google Scholar
- 169.Shmuel Kantorovitz, “The Hille–Yosida space of an arbitrary operator,” J. Math. Anal. Appl., 136, No. 1, 107–111 (1988).MathSciNetMATHCrossRefGoogle Scholar
- 170.T. Kato, “Perturbation theory for linear perators,” Classics in Mathematics, Springer-Verlag, Berlin (1995).Google Scholar
- 171.H. Kellerman, “Integrated semigroups,” Dissertatiòn universität Tübingen (1986).Google Scholar
- 172.H. Kellerman and M. Hieber, “Integrated semigroups,” J. Funct. Anal., 84, No. 1, 160–180 (1989).MathSciNetMATHCrossRefGoogle Scholar
- 173.V. Keyantuo, “Integrated semigroups and related partial differential equations,” J. Math. Anal. Appl., 212, No. 1, 135–153 (1997).MathSciNetMATHCrossRefGoogle Scholar
- 174.A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam (2006).MATHGoogle Scholar
- 175.A. N. Kochubei, “A Cauchy problem for evolution equations of fractional order,” Differential Equations, 25, 967–974 (1989).MathSciNetGoogle Scholar
- 176.M. Y. Kokurin, “On a multidimensional integral equation with data supported by low-dimensional analytic manifolds,” J. Inverse Ill-Posed Probl., 21, No. 1, 125–140 (2013).MathSciNetMATHCrossRefGoogle Scholar
- 177.M. Yu. Kokurin, “On a correlation method for investigating random wave fields,” Sib. Zh. Ind. Mat., 14, No. 4, 24–31 (2011).MathSciNetMATHGoogle Scholar
- 178.M. Yu. Kokurin, “An exact penalty method for monotone variational inequalities and orderoptimal algorithms for finding saddle points,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 8, 23–33 (2011).Google Scholar
- 179.M. M. Kokurin, “Difference schemes for solving the Cauchy problem for a second-order operator differential equation,” Comput. Math. Math. Phys., 54, No. 4, 582–597 (2014).MathSciNetMATHCrossRefGoogle Scholar
- 180.M. Kokurin and V. Kljuchev, “Necessary and sufficient conditions for logarithmic convergence of regularization methods for solving inverse Cauchy problem in Banach space,” J. Inverse Ill-Posed Probl., 14, No. 5, 481–504 (2006).MathSciNetMATHCrossRefGoogle Scholar
- 181.M. Kostić, “Differential and analytical properties of semigroups of operators,” Integral Equations Operator Theory, 67, No. 4, 499–557 (2010).Google Scholar
- 182.M. Kostić, “Generalized semigroups and cosine functions,” Posebna Izdan., 23, vi+352 (2011).Google Scholar
- 183.M. Kostić, “On analytic integrated semigroups,” Novi Sad J. Math., 35, No. 1, 127–135 (2005).MathSciNetMATHGoogle Scholar
- 184.M. Kostic, Abstract Volterra Integro-Differential Equations, Boca Raton, FL: CRC Press (ISBN 978-1-4822-5430-3/hbk; 978-1-4822-5431-0/ebook), xxv, 458 p. (2015).Google Scholar
- 185.V. A. Kostin, “The Cauchy problem for an abstract differential equation with fractional derivatives,” Dokl. Ross. Akad. Nauk, 326, No. 4, 597–600 (1992).Google Scholar
- 186.T. Kowalski and W. Sadkowski, “Applications of C-groups to existence of solutions of some mixed problems,” Demonstr. Math., 31, No. 2, 477–484 (1998).MathSciNetMATHGoogle Scholar
- 187.T. Kowalski and W. Sadkowski, “Applications of integrated semigroups for control theory,” Int. J. Differ. Equ. Appl., 7, No. 2, 123–139 (2003).MathSciNetMATHGoogle Scholar
- 188.T. Kowalski and W. Sadkowski, “Application of once integrated semigroups for the abstract boundary control,” Int. J. Pure Appl. Math., 36, No. 1, 13–26 (2007).MathSciNetMATHGoogle Scholar
- 189.T. Kowalski and W. Sadkowski, “The null-exact controllability of the generalized wave problem governed by once integrated semigroups,” Demonstr. Math., 37, No. 3, 745–760 (2004).MathSciNetMATHGoogle Scholar
- 190.M. A. Krasnosel’sky, I. V. Emelin, and V. S. Kozjakin, “On iterative procedures in linear problems,” Preprint. Institute of Control, Moscow (1979).Google Scholar
- 191.R. Kravarušić and M. Mijatović, “Integrated C-semigroups of unbounded linear operators in Banach spaces,” Novi Sad J. Math., 35, No. 2, 1–17 (2005).MathSciNetMATHGoogle Scholar
- 192.R. Kravarušić, M. Mijatović, and S. Pilipović, “Integrated semigroups of unbounded linear operators and C 0-semigroups on subspaces,” Mat. Vesnik, 54, 117–124 (2002).MathSciNetMATHGoogle Scholar
- 193.R. Kravarušić, M. Mijatović, and S. Pilipović, “Integrated semigroups of unbounded linear operators,” Filomat, No. 15, 197–210 (2001).Google Scholar
- 194.R. Kravarušić, M. Mijatović, and S. Pilipović, “Integrated semigroup of unbounded linear operators. Cauchy problem. II,” Novi Sad J. Math., 28, No. 1, 107–122 (1998).MathSciNetMATHGoogle Scholar
- 195.R. Kravarušić, M. Mijatović, and S. Pilipović, “Integrated semigroups of unbounded linear operators in Banach spaces. I,” Bull. Cl. Sci. Math. Nat. Sci. Math., 23, 45–62 (1998).MathSciNetMATHGoogle Scholar
- 196.R. Kravarušić, M. Mijatović, and S. Pilipović, “Integrated semigroups of unbounded linear operators and C 0-semigroups on subspaces,” Proceedings of the 5th International Symposium on Mathematical Analysis and its Applications, Nauka Banja, 2002, Mat. Vesnik, 54, No. 3–4, 117–124 (2002).Google Scholar
- 197.S. G. Krein “Linear differential equations in Banach space,” Am. Math. Soc., Providence, R.I. (1971).Google Scholar
- 198.Ch.-Ch. Kuo, “On existence and approximation of solutions of abstract Cauchy problem,” Taiwan. J. Math., 13, No. 1, 137–155 (2009).MathSciNetMATHCrossRefGoogle Scholar
- 199.Ch.-Ch. Kuo, “On exponentially bounded α times integrated C-cosine functions,” Yokohama Math. J., 52, No. 1, 59–72 (2005).MathSciNetMATHGoogle Scholar
- 200.Ch.-Ch. Kuo, “On perturbation of α times integrated C-semigroups,” Taiwan. J. Math., 14, No. 5, 1979–1992 (2010).MathSciNetMATHCrossRefGoogle Scholar
- 201.Ch.-Ch. Kuo, “Perturbation theorems for local integrated semigroups,” Stud. Math., 197, No. 1, 13–26 (2010).MathSciNetMATHCrossRefGoogle Scholar
- 202.Ch.-Ch. Kuo and S.-Y. Shaw, “C-cosine functions and the abstract Cauchy problem. I, II,” J. Math. Anal. Appl., 210, No. 2, 632–666 (1997).MathSciNetMATHCrossRefGoogle Scholar
- 203.Ch.-Ch. Kuo and S.-Y. Shaw, “Abstract Cauchy problems associated with local C-semigroups,” In: Semigroups of Operators: Theory and Applications (Rio de Janeiro, 2001), 158–168, Optimization Software, New York (2002).Google Scholar
- 204.Ch.-Ch. Kuo and S.-Y. Shaw, “On α times integrated C-semigroups and the abstract Cauchy problem,” Stud. Math., 142, No. 3, 201–217 (2000).MathSciNetMATHCrossRefGoogle Scholar
- 205.Ch.-Ch. Kuo and S.-Y. Shaw, “Strong and weak solutions of abstract Cauchy problems,” J. Concr. Appl. Math., 2, No. 3, 191–212 (2004).MathSciNetMATHGoogle Scholar
- 206.T. G. Kurtz, “Extensions of Trotter’s operator semigroup approximation theorems,” J. Funct. Anal., 3, 354–375 (1969).MathSciNetMATHCrossRefGoogle Scholar
- 207.K. L. Lang and G. J. Yang, “Local C-semigroups and abstract Cauchy problems,” Math. Appl. (Wuhan), 11, No. 4, 33–37 (1998).MathSciNetMATHGoogle Scholar
- 208.K. Lang and G. Yang, “Trotter–Kato theorems for an α times integrated semigroups,” Chin. Quart. J. Math., 14, No. 3, 11–16 (1999).MathSciNetMATHGoogle Scholar
- 209.R. de Laubenfels, “Existence families, functional calculi and evolution equations,” Lecture Notes in Math., 1570, Springer-Verlag (1994).Google Scholar
- 210.R. de Laubenfels, “C-semigroups and strongly continuous semigroups,” Israel J. Math., 81, No. 1–2, 227–255 (1993).MathSciNetCrossRefGoogle Scholar
- 211.R. de Laubenfels, “C-semigroups and the Cauchy problem,” J. Funct. Anal., 111, No. 1, 44–61 (1993).MathSciNetCrossRefGoogle Scholar
- 212.R. de Laubenfels “Existence and uniquness families for the abstract Cauchy problem,” J. London Math. Soc., 44(2), 310–338 (1991).MathSciNetCrossRefGoogle Scholar
- 213.Ralph De Laubenfels, “Inverses of generators,” Proc. Am. Math. Soc., 104, No. 2, 443–448 (1988).MathSciNetCrossRefGoogle Scholar
- 214.R. de Laubenfels, “Holomorphic C-existence families,” Tokyo J. Math., 15, No. 1, 17–38 (1992).MathSciNetCrossRefGoogle Scholar
- 215.R. de Laubenfels, “Integrated semigroups and integrodifferential equations,” Math. Z., 204, No. 4, 501–514 (1990).MathSciNetCrossRefGoogle Scholar
- 216.R. de Laubenfels, “Inverses of generators of integrated or regularized semigroups,” Semigroup Forum,” 75, No. 2, 457–463 (2007).Google Scholar
- 217.R. de Laubenfels, “Integrated semigroups, C-semigroups and the abstract Cauchy problems,” Semigroups Forum, 41, No. 1, 83–95 (1990).Google Scholar
- 218.R. de Laubenfels, “Polynomials of generators of integrated semigroups,” Proc. Am. Math. Soc., 107, No. 1, 197–204 (1989).MathSciNetCrossRefGoogle Scholar
- 219.R. de Laubenfels and M. Jazar, “Functional calculi, regularized semigroups and integrated semigroups,” Stud. Math., 132, No. 2, 151–172 (1999).MathSciNetMATHCrossRefGoogle Scholar
- 220.M. M. Lavrent’ev, Über gewisse inkorrekte Aufgaben der mathematischen Physik [in Russian], Verlag der Sibirischen Abteilung der Akademie der Wissenschaften der UdSSR, Novosibirsk (1962).Google Scholar
- 221.Y. S. Lee, “Exponential formula for exponentially bounded C-semigroups,” Bull. Korean Math. Soc., 35, No. 1, 45–52 (1998).MathSciNetMATHGoogle Scholar
- 222.Y. S. Lei and Q. Zheng, “Adjoint semigroups of exponentially bounded C-semigroups,” Math. Appl. (Wuhan), 6, suppl., 154–159 (1993).Google Scholar
- 223.Y. S. Lei and Q. Zheng, “Exponentially bounded C-semigroups and integrated semigroups with non-densely defined generators. II. Perturbations,” Acta Math. Sci. (Chinese), 13, No. 4, 428–434 (1993).Google Scholar
- 224.Y. S. Lei and Q. Zheng, “The application of C-semigroups to differential operators in L p(ℝn),” J. Math. Anal. Appl., 188, No. 3, 809–818 (1994).Google Scholar
- 225.L. D. Lemle, “Une formule exponentielle pour les semi-groupes intégrés” (French) [An exponential formula for integrated semigroups], In: Proceedings of the Tenth Symposium of Mathematics and its Applications, 102–109, Rom. Acad., Timi,soara (2003).Google Scholar
- 226.X. L. Li, “Right local left C-semigroup,” J. Lanzhou Univ. Nat. Sci., 44, No. 5, 94–98 (2008).MathSciNetMATHGoogle Scholar
- 227.Y. Li, “Differentiable, entire vectors and abstract Cauchy problems,” Nanjing Daxue Xuebao Ziran Kexue Ban, 33, No. 2, 161–168 (1997).Google Scholar
- 228.Y. R. Li, “Contraction integrated semigroups and their application to continuous-time Markov chains,” In: International Workshop on Operator Algebra and Operator Theory (Linfen, 2001), Acta Math. Sin. (Engl. Ser.), 19, No. 3, 605–618 (2003).Google Scholar
- 229.M. Li and F. Huang, “Characterizations of contraction C-semigroups,” Proc. Am. Math. Soc., 126, No. 4, 1063–1069 (1998).MathSciNetMATHCrossRefGoogle Scholar
- 230.M. Li and F. Huang, “Singular regularized semigroups and integrated semigroups,” Sichuan Daxue Xuebao, 38, No. 6, 781–787 (2001).Google Scholar
- 231.M. Li and S. Piskarev, “On approximation of integrated semigroups,” Taiwan. J. Math., 14, No. 6, 2137–2161 (2010).MathSciNetMATHCrossRefGoogle Scholar
- 232.Y. Li and J. Li, “Markov integrated semigroups and their applications to continuous-time Markov chains,” Integral Equations Operator Theory, 60, No. 2, 247–269 (2008).Google Scholar
- 233.Y.-Ch. Li and S.-Y. Shaw, “Infinite differentiability of Hermitian and positive C-semigroups and C-cosine functions,” Publ. Res. Inst. Math. Sci., 34, No. 6, 579–590 (1998).MathSciNetMATHCrossRefGoogle Scholar
- 234.Y.-Ch. Li and S.-Y. Shaw, “Hermitian and positive C-semigroups on Banach spaces,” Publ. Res. Inst. Math. Sci., 31, No. 4, 625–644 (1995).MathSciNetMATHCrossRefGoogle Scholar
- 235.Y.-Ch. Li and S.-Y. Shaw, “Hermitian and positive integrated C-cosine functions on Banach spaces,” Positivity, 2, No. 3, 281–299 (1998).Google Scholar
- 236.Y.-Ch. Li and S.-Y. Shaw, “Integrated C-semigroups and C-cosine functions of Hermitian and positive operators,” In: Semigroups of Operators: Theory and Applications (Newport Beach, CA, 1998), 174–183; Progr. Nonlinear Differ. Equ. Appl., 42, Birkhäuser, Basel (2000).Google Scholar
- 237.Y.-C. Li and S.-Y. Shaw, “N times integrated C-semigroups and the abstract Cauchy problem”, Taiwan. J. Math., 1, No. 1, 75–102 (1997).MathSciNetMATHCrossRefGoogle Scholar
- 238.Y.-Ch. Li and S.-Y. Shaw, “On characterization and perturbation of local C-semigroups,” Proc. Am. Math. Soc., 135, No. 4, 1097–1106 (2007) (electronic).Google Scholar
- 239.Y.-Ch. Li and S.-Y. Shaw, “On generators of integrated C-semigroups and C-cosine functions,” Semigroup Forum, 47, No. 1, 29–35 (1993).Google Scholar
- 240.Y.-Ch. Li and S.-Y. Shaw, “On local α times integrated C-semigroups,” Abstr. Appl. Anal., Art. ID 34890, 18 pp. (2007).Google Scholar
- 241.Y.-Ch. Li and S.-Y. Shaw, “Perturbation of non-exponentially-bounded α times integrated C-semigroups,” J. Math. Soc. Jpn., 55, No. 4, 1115–1136 (2003).MathSciNetMATHCrossRefGoogle Scholar
- 242.M. Li and Q. Zheng, “α times integrated semigroups: local and global,” Stud. Math., 154, No. 3, 243–252 (2003).MathSciNetMATHCrossRefGoogle Scholar
- 243.M. Li and Q. Zheng, “Extrapolation spaces for C-semigroups,” Proc. Am. Math. Soc., 137, No. 2, 663–668 (2009).MathSciNetMATHCrossRefGoogle Scholar
- 244.M. Li and Q. Zheng, “On the product formulas for C-semigroups,” Semigroup Forum, 78, No. 3, 536–546 (2009).Google Scholar
- 245.M. Li, F.-L. Huang, and X.-L. Chu, “Ergodic theory for C-semigroups,” Sichuan Daxue Xuebao, 36, No. 4, 645–651 (1999).Google Scholar
- 246.M. Li, F.-L. Huang, and Q. Zheng, “Local integrated C-semigroups,” Stud. Math., 145, No. 3, 265–280 (2001).MathSciNetMATHCrossRefGoogle Scholar
- 247.Miao Li, Vladimir Morozov, and Sergey Piskarev, “On the approximations of derivatives of integrated semigroups II,” J. Inverse Ill-posed Probl., Vol. 19, Issue 3–4, 643–688 (2011).MathSciNetMATHGoogle Scholar
- 248.M. Li, V. Morozov, and S. Piskarev, “On the approximations of derivatives of integrated semigroups,” J. Inverse Ill-Posed Probl., 18, No. 5, 515–550 (2010).MathSciNetMATHCrossRefGoogle Scholar
- 249.F. Li, H. Wang, and Z. Qu, “Some results on n times integrated C-regularized semigroups,” Adv. Differ. Equ., Art. ID 394584, 9 p. (2011).Google Scholar
- 250.J. Liang and T. Xiao, “Integrated semigroups and higher order abstract equations,” J. Math. Anal. Appl., 222, No. 1, 110–125 (1998).MathSciNetMATHCrossRefGoogle Scholar
- 251.J. Liang and T. Xiao, “Well-posedness results for certain classes of higher order abstract Cauchy problems connected with integrated semigroups,” Semigroup Forum, 56, No. 1, 84–103 (1998).Google Scholar
- 252.L. Lin and X. Zeng, “Locally saturation theorem for probabilistic representation formulas of C-semigroups,” J. Math. Study, 28, No. 3, 93–98 (1995).MathSciNetMATHGoogle Scholar
- 253.Q. Lin, “Probabilistic approximation for C-semigroups,” Math. Pract. Theory, 38, No. 3, 123–129 (2008).MathSciNetMATHGoogle Scholar
- 254.J. L. Lions, “Semi-groupes distributions,” Port. Math., 19, 141–164 (1960).MathSciNetMATHGoogle Scholar
- 255.H. Liu and S.-Y. Shaw, “Rates of local ergodic limits of n times integrated solution families,” In: Semigroups of Operators: Theory and Applications (Newport Beach, CA, 1998), 192–202; Progr. Nonlinear Differential Equations Appl., 42, Birkhäuser, Basel (2000).Google Scholar
- 256.J. H. Liu, X. Q. Song, and W. Zhou, “Local C-semigroups and weak solutions of an abstract Cauchy problem,” Math. Pract. Theory, 39, No. 17, 123–127 (2009).MathSciNetGoogle Scholar
- 257.M. Liu, D.-Q. Liao, Q.-Q. Zhu, and F.-H. Wang, “α times integrated C-semigroups,” Adv. Pure Math., 2, 211–215 (2012).MATHCrossRefGoogle Scholar
- 258.M. Liu, X. Q. Song, and R. Rong, “Perturbation of n times integrated C-semigroups,” J. Xuzhou Norm. Univ. Nat. Sci. Ed. (Chinese), 23, No. 3, 10–14 (2005).MathSciNetMATHGoogle Scholar
- 259.Q. R. Liu and X. F. Gui, “Some properties of integrated C-semigroups and their application to abstract Cauchy problems,” J. Northwest Univ., 24, No. 1, 1–5 (1994).MathSciNetGoogle Scholar
- 260.Q. R. Liu and H. X. Zhao, “Local integrated C-semigroups and the abstract Cauchy problems. I,” J. Northwest Univ., 24, No. 5, 381–386 (1994).MathSciNetMATHGoogle Scholar
- 261.Y. Liu, J.-R. Qiang, and M. Li, “Perturbations of α times integrated semigroups,” Sichuan Daxue Xuebao, 47, No. 5, 973–976 (2010).Google Scholar
- 262.Zh. Liu, P. Magal, and Sh. Ruan, “Projectors on the generalized eigenspaces for functional differential equations using integrated semigroups,” J. Differ. Equ., 244, No. 7, 1784–1809 (2008).MathSciNetMATHCrossRefGoogle Scholar
- 263.M. Liu, Sh. Wang, Q. Yu, and Zh. Wang, “α times integrated C-semigroups and strong solution of abstract Cauchy problem,” Intern. J. Mod. Nonlinear Theory Appl., 2, 164–166 (2013).CrossRefGoogle Scholar
- 264.C. Lizama, “On the convergence and approximation of integrated semigroups,” J. Math. Anal. Appl., 181, No. 1, 89–103 (1994).MathSciNetMATHCrossRefGoogle Scholar
- 265.F. Long and X. L. Xiang, “Stability of m times integrated semigroups and the mild solution of abstract Cauchy problems,” Acta Anal. Funct. Appl., 3, No. 4, 358–365 (2001).MathSciNetMATHGoogle Scholar
- 266.F. L. Lu, X. Q. Song, and F. H. Wang, “Perturbation of α times integrated semigroups,” Acta Anal. Funct. Appl., 12, No. 3, 254–258 (2010).MathSciNetGoogle Scholar
- 267.G. Lumer, “Applications des solutions généralisées et semi-groupes intégrés à des problémes d’évolution,” (French) [“Applications of generalized solutions and integrated semigroups to evolution problems”], C. R. Acad. Sci. Paris Sér. I Math., 311, No. 13, 873–878 (1990).Google Scholar
- 268.G. Lumer, “Examples and results concerning the behavior of generalized solutions, integrated semigroups, and dissipative evolution problems,” In: Semigroup Theory and Evolution Equations (Delft, 1989), 347–356, Lecture Notes in Pure and Appl. Math., 135, Marcel Dekker, New York (1991).Google Scholar
- 269.G. Lumer, “Generalized evolution operators and (generalized) C-semigroups,” In: Semigroup Theory and Evolution Equations (Delft, 1989), 337–345, Lecture Notes in Pure and Appl. Math., 135, Marcel Dekker, New York (1991).Google Scholar
- 270.G. Lumer, “Problémes dissipatifs et ‘analytiques’ mal posés: solutions et théorie asymptotique”( French), [“Dissipative and ‘analytic’ ill-posed problems: solutions and asymptotic theory”], C. R. Acad. Sci. Paris Sér. I Math., 312, No. 11, 831–836 (1991).Google Scholar
- 271.G. Lumer, “Semi-groupes irréguliers et semi-groupes intégrés: application à l’identification de semi-groupes irréguliers analytiques et résultats de génération” (French), [“Irregular semigroups and integrated semigroups: application to the identification of irregular analytic semigroups and generation results”], C. R. Acad. Sci. Paris Sér. I Math., 314, No. 13, 1033–1038 (1992).Google Scholar
- 272.G. Lumer, “Singular evolution problems, regularization, and applications to phisics, engineering and biology,” Linear Operators Banach Center Publications, V. 38, Institute of mathematics Polish academy of sciences, Warshava (1997), pp. 205–216.Google Scholar
- 273.G. Lumer, “Solutions généralisées et semi-groupes intégrés” (French), [“Generalized solutions and integrated semigroups”], C. R. Acad. Sci. Paris Sér. I Math., 310, No. 7, 577–582 (1990).Google Scholar
- 274.P. Magal and Sh. Ruan, “On integrated semigroups and age structured models in L p spaces,” Differ. Integral Equ., 20, No. 2, 197–239 (2007).MATHMathSciNetGoogle Scholar
- 275.A. S. Makarov, “On some classes of generalized and g-integrated semigroups,” Vestn. Chelyabinsk. Univ. Ser. 3 Mat. Mekh., No. 2(5), 48–55 (1999).Google Scholar
- 276.M. Bachar Mardiyana and W. Desch, “A Trotter–Kato theorem for α times integrated Cregularized semigroups,” Dedicated to István Györi on the occasion of his sixtieth birthday, Funct. Differ. Equ., 11, No. 1-2, 103–110 (2004).Google Scholar
- 277.T. Matsumoto, “Time-dependent nonlinear perturbations of integrated semigroups,” Nihonkai Math. J., 7, No. 1, 1–28 (1996).MathSciNetMATHGoogle Scholar
- 278.T. Matsumoto, Sh. Oharu, and N. Tanaka, “Time-dependent nonlinear perturbations of analytic and integrated semigroups,” In: Nonlinear Partial Differential Equations and Their Applications, 430–449, GAKUTO Int. Ser. Math. Sci. Appl., 20, Gakkōtosho, Tokyo (2004).Google Scholar
- 279.T. Matsumoto, Sh. Oharu, and H. R. Thieme, “Nonlinear perturbations of a class ofintegrated semigroups,” Hiroshima Math. J., 26, No. 3, 433–473 (1996).MathSciNetMATHGoogle Scholar
- 280.Zh.-D. Mei, J.-G. Peng, and J.-H. Gao, “Convoluted fractional C-semigroups and fractional abstract Cauchy problems,” Hindawi Publishing Corporation Abstract and Applied Analysis, Volume 2014, Article ID 357821, 9 p.Google Scholar
- 281.I. V. Melnikova, “Abstract well-posed and ill-posed Cauchy problems for inclusions,” In: Semigroups of Operators: Theory and Applications (Newport Beach, CA, 1998), 203–212, Progr. Nonlinear Differential Equations Appl., 42, Birkhäuser, Basel (2000).Google Scholar
- 282.I. V. Melnikova, “General theory of the ill-posed Cauchy problem,” J. Inverse Ill-Posed Probl., 3, No. 2, 149–171 (1995).MathSciNetMATHCrossRefGoogle Scholar
- 283.I. V. Melnikova, “Semigroup regularization for ill-posed Cauchy problems,” Semigroups of Operators: Theory and Applications (Rio de Janeiro, 2001), 189–199, Optimization Software, New York (2002).Google Scholar
- 284.I. V. Melnikova, “Semigroup regularization of differential problems,” Dokl. Akad. Nauk, 393, No. 6, 744–748 (2003).MathSciNetGoogle Scholar
- 285.I. V. Melnikova, “The abstract Cauchy problem. Semigroup methods, methods for abstract distributions, and regularization methods,” Differential equations (Moscow, 1998), 16–113, In: Progress in Science and Technology, Series on Contemporary Problems in Mathematics andIts Applications, Thematical Surveys [in Russian], Vol. 66, All-Russian Institute for Scientific and Technical Information (VINITI), Ross. Akad. Nauk, Moscow (1999).Google Scholar
- 286.I. V. Melnikova, “The method of integrated semigroups for Cauchy problems in Banach spaces,” Sib. Mat. Zh., 40, No. 1, 119–129, (1999).MathSciNetGoogle Scholar
- 287.I. V. Melnikova and M. A. Alshanskiy, “Generalized well-posedness of the Cauchy problem and integrated semigroups,” Dokl. Akad. Nauk, 343, No. 4, 448–451 (1995).MathSciNetGoogle Scholar
- 288.I. V. Melnikova and M. A. Alshanskiy, “Well-posedness of the Cauchy problem in a Banach space: regular and degenerate cases,” Analysis, 9. J. Math. Sci., 87, No. 4, 3732–3780 (1997).Google Scholar
- 289.I. V. Melnikova and S. V. Bochkareva, “C-semigroups and the regularization of an ill-posed Cauchy problem,” Dokl. Akad. Nauk, 329, No. 3, 270–273 (1993).MathSciNetGoogle Scholar
- 290.I. V. Melnikova and A. Filinkov, Abstract Cauchy Problems: Three Approaches, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 120. Chapman & Hall/CRC, Boca Raton, FL, 2001. xxii+236 pp. ISBN: 1–58488–250–6.Google Scholar
- 291.I. V. Melnikova and A. Filinkov, “Abstract stochastic problems with generators of regularized semigroups,” Commun. Appl. Anal., 13, No. 2, 195–212 (2009).MathSciNetMATHGoogle Scholar
- 292.I. V. Melnikova and A. I. Filinkov, “Integrated semigroups and C-semigroups. Well-posedness and regularization of operator-differential problems,” Usp. Mat. Nauk, 49, No. 6(300), 111–150 (1994).Google Scholar
- 293.P. J. Miana, “α times integrated semigroups and fractional derivation,” Forum Math., 14, No. 1, 23–46 (2002).MathSciNetMATHCrossRefGoogle Scholar
- 294.P. J. Miana, “Local and global solutions of well-posed integrated Cauchy problems,” Stud. Math., 187, No. 3, 219–232 (2008).MathSciNetMATHCrossRefGoogle Scholar
- 295.P. J. Miana, “Subordinated holomorphic semigroups to integrated semigroups and groups,” In: Iteration Theory (ECIT ’06), 114–128, Grazer Math. Ber., 351, Institut für Mathematik, Karl-Franzens-Universität Graz, Graz (2007).Google Scholar
- 296.M. Mijatović and S. Pilipović, “α times integrated semigroups (α ∈ ℝ_),” In: 4th Symposium on Mathematical Analysis and Its Applications (Arandelovac, 1997), Mat. Vesnik, 49, No. 3-4, 153–162 (1997).Google Scholar
- 297.M. Mijatović and S. Pilipović, “Integrated semigroups and distribution semigroups — Cauchy problem,” Math. Montisnigri, 11, 43–65 (1999).MathSciNetMATHGoogle Scholar
- 298.M. Mijatović and S. Pilipović, “Integrated semigroups, relations with generators,” Novi Sad J. Math., 27, No. 2, 65–75 (1997).MathSciNetMATHGoogle Scholar
- 299.M. Mijatović, S. Pilipović, and F. Vajzović, “α times integrated semigroups (α ∈ ℝ+),” J. Math. Anal. Appl., 210, No. 2, 790–803 (1997).Google Scholar
- 300.N. V. Minh, “Almost periodic solutions of C-well-posed evolution equations,” Math. J. Okayama Univ., 48, 145–157 (2006).MathSciNetMATHGoogle Scholar
- 301.Man Nguyen Minh, “Almost periodic solutions of evolution equations associated with C-semigroups: An approach via implicit difference equations,” Vietnam J. Math., 33, No. 1, 63–72 (2005).Google Scholar
- 302.I. Mishra, “C-semigroups and almost periodic solution of non-autonomous evolution equation,” Int. J. Evol. Equ., 6, No. 3, 265–278 (2013).MathSciNetMATHGoogle Scholar
- 303.I. Miyadera, “A generalization of the Hille–Yosida theorem,” Proc. Jpn. Acad. Ser. A Math. Sci., 64, No. 7, 223–226 (1988).MathSciNetMATHCrossRefGoogle Scholar
- 304.I. Miyadera, “C-semigroups, semigroups and n times integrated semigroups,” In: Differential equations and control theory (Iaşi, 1990), 193–207, Pitman Res. Notes Math. Ser., 250, Longman Sci. Tech., Harlow (1991).Google Scholar
- 305.I. Miyadera, “C-semigroups and semigroups of linear operators,” Differential equations (Plovdiv, 1991), 133–143, World Sci. Publ., River Edge, NJ (1992).Google Scholar
- 306.I. Miyadera, “On the generators of exponentially bounded C-semigroups,” Proc. Jpn. Acad. Ser. A Math. Sci., 62, No. 7, 239–242 (1986).MathSciNetMATHCrossRefGoogle Scholar
- 307.I. Miyadera, M. Okubo, and N. Tanaka, “α times integrated semigroups and abstract Cauchy problem,” Mem. School Sci. Engrg. Waseda Univ., No. 57, 267–289 (1994).Google Scholar
- 308.I. Miyadera, M. Okubo, and N. Tanaka, “On integrated semigroups which are not exponentially bounded,” Proc. Jpn. Acad. Ser. A Math. Sci., 69, No. 6, 199–204 (1993).MathSciNetMATHCrossRefGoogle Scholar
- 309.I. Miyadera and N. Tanaka, “A remark on exponentially bounded C-semigroups,” Proc. Jpn. Acad. Ser. A Math. Sci., 66, No. 2, 31–34 (1990).MathSciNetMATHCrossRefGoogle Scholar
- 310.I. Miyadera and N. Tanaka, “Exponentially bounded C-semigroups and generation of semigroups,” J. Math. Anal. Appl., 143, No. 2, 358–378 (1989).MathSciNetMATHCrossRefGoogle Scholar
- 311.I. Miyadera and N. Tanaka, “Generalization of the Hille–Yosida theorem,” In: Semigroup theory and evolution equations (Delft, 1989), 371–381, Lecture Notes in Pure and Appl. Math., 135, Dekker, New York (1991).Google Scholar
- 312.V. A. Morozov, “Generalized ‘sourcewisity’ and the rate of convergence of regularized solutions,” Fundam. Prikl. Mat., 3, No. 1, 171–177 (1997).MathSciNetMATHGoogle Scholar
- 313.V. A. Morozov, Regularization Methods for Ill-posed Problems, Transl. from the Russian, CRC Press, Boca Raton, FL (1993).Google Scholar
- 314.Claus Muller and Eberhard Schock, “Ill-posed problems, C 0-semigroups and the Showalter regularization,” J. Math. Anal. Appl., 299, No. 1, 205–220 (2004).MathSciNetMATHCrossRefGoogle Scholar
- 315.K. Nagaoka, “Generation of the integrated semigroups by superelliptic differential operators,” J. Math. Anal. Appl., 341, No. 2, 1143–1154 (2008).MathSciNetMATHCrossRefGoogle Scholar
- 316.F. Neubrander, “Integrated semigroups and their application to complete second order Cauchy problems,” In: Semigroups and differential operators (Oberwolfach, 1988). Semigroup Forum, 38, No. 2, 233–251 (1989).Google Scholar
- 317.F. Neubrander, “Integrated semigroups and their applications to the abstract Cauchy problem,” Pacific J. Math., 135, No. 1, 111–155 (1988).MathSciNetMATHCrossRefGoogle Scholar
- 318.S. Nicaise, “The Hille–Yosida and Trotter–Kato theorems for integrated semigroups,” J. Math. Anal. Appl., 180, No. 2, 303–316 (1993).MathSciNetMATHCrossRefGoogle Scholar
- 319.N. Okazawa, “A generation theorem for semigroups of growth order α,” Tohoku Math. J., 26, No. 1, 39–51 (1974).MathSciNetMATHCrossRefGoogle Scholar
- 320.N. Okazawa, “A remark on infinitesimal generators of C-semigroups,” SUT J. Math., 25, No. 2, 123–127 (1989).MathSciNetMATHGoogle Scholar
- 321.S. Ouchi, “Semigroups of operators in locally convex spaces,” J. Math. Soc. Jpn., 25, 265–276 (1973).MathSciNetMATHCrossRefGoogle Scholar
- 322.M. M. H. Pang, “Resolvent estimates for Schrödinger operators in L p(ℝN) and the theory of exponentially bounded C-semigroups,” Semigroup Forum, 41, No. 1, 97–114 (1990).Google Scholar
- 323.V. S. Parfenenkova, “Classification of solution operators semigroups for abstract Cauchy problems,” The Bulletin of Irkutsk State University. Series “Mathematics”, Vol. 9, 103–117 (2014).Google Scholar
- 324.J. Y. Park, “Exponentially bounded C-semigroup in Frechet space,” Kobe J. Math., 7, No. 2, 109–123 (1990).MathSciNetMATHGoogle Scholar
- 325.J. Y. Park, D. H. Jeong, and J.-W. Yu, “Convergence and general representation of the exponentially bounded C-semigroups in Banach space,” Bull. Korean Math. Soc., 26, No. 1, 53–67 (1989).MathSciNetMATHGoogle Scholar
- 326.A. M. Peng, X. Q. Song, and X. Z. Zhang, “Stability of C-semigroups in Hilbert spaces,” J. Xuzhou Norm. Univ. Nat. Sci. Ed., 22, No. 2, 5–8 (2004).MathSciNetMATHGoogle Scholar
- 327.Jigen Peng and Kexue Li, “A novel characteristic of solution operator for the fractional abstract Cauchy problem,” J. Math. Anal. Appl., 385, 786–796 (2012).Google Scholar
- 328.J. G. Peng and M. S. Wang, “The (n, k)-well-posedness of abstract Cauchy problems,” Gongcheng Shuxue Xuebao, 11, No. 2, 123–126 (1994).Google Scholar
- 329.Yu. I. Petunin and A. N. Plichko, The Theory of the Characteristics of Subspaces and Its Applications [in Russian], Golovnoe Izdatel’stvo Izdatel’skogo Ob’edineniya “Vishcha Shkola,” Kiev (1980), p. 216.Google Scholar
- 330.S. Piskarev, Differential Equations in Banach Space and Their Approximation [in Russian], Moscow State University Publish House, Moscow (2005).Google Scholar
- 331.S. Piskarev, “Estimates of the convergence rate in case of solution of ill-posed problems for evolution equations,” Izv. Akad. Nauk USSR, Ser. Math., Vol. 51, No. 3, 678–687 (1987).Google Scholar
- 332.S. Piskarev, “Solution of a second order evolution equation under the Krein–Fattorini conditions,” Differ. Equ., 21, 1100–1106 (1985).MathSciNetMATHGoogle Scholar
- 333.S. Piskarev, “Discretization of abstract hyperbolic equation,” Tartu Riikl. Ul. Toimetised, 500, 3–23 (1979).MathSciNetGoogle Scholar
- 334.S. Piskarev, S.-Y. Shaw, and J. A. van Casteren, “Approximation of ill-posed evolution problems and discretization of C-semigroups,” J. Inverse Ill-Posed Probl., 10, No. 5, 513–546 (2002).MathSciNetMATHCrossRefGoogle Scholar
- 335.M. V. Plekhanova and V. E. Fedorov, “On the existence and uniqueness of solutions of problems of the optimal control of linear distributed systems unsolved with respect to the time derivative,” Izv. Ross. Akad. Nauk, Ser. Mat., 75, No. 2, 177–194 (2011).Google Scholar
- 336.M. V. Plekhanova and V. E. Fedorov, “An optimality criterion in a control problem for a Sobolev-type linear equation,” Izv. Ross. Akad. Nauk Teor. Sist. Upr., No. 2, 37–44 (2007).Google Scholar
- 337.M. V. Plekhanova and V. E. Fedorov, “An optimal control problem for a class of degenerate equations,” Izv. Akad. Nauk Teor. Sist. Upr., No. 5, 40–44 (2004).Google Scholar
- 338.P. Preda, A. Pogan, and C. Preda, “The Perron problem for C-semigroups,” Math. J. Okayama Univ., 46, 141–151 (2004).MathSciNetMATHGoogle Scholar
- 339.J. Prüss, Evolutionary Integral Equation and Applications, Birkhäuser, Basel (1993).MATHCrossRefGoogle Scholar
- 340.M. Qian, “Extension of an elliptic differential operator and C-semigroups,” Acta Math. Sinica, 22, No. 4, 471–486 (1979).MathSciNetMATHGoogle Scholar
- 341.J. Qiang, M. Li, and Q. Zheng, “The applications of C-semigroups to the Dirac equation,” Appl. Math. Lett., 22, No. 3, 422–427 (2009).MathSciNetMATHCrossRefGoogle Scholar
- 342.H. L. Qiao and H. X. Zhao, “Individual weak stability of C-semigroups,” Pure Appl. Math. (Xi’an), 23, No. 1, 83–86 (2007).MathSciNetMATHGoogle Scholar
- 343.D. Rastović, “A note on stability properties of integrated semigroups,” Acta Math. Inform. Univ. Ostraviensis, 3, No. 1, 61–65 (1995).MathSciNetMATHGoogle Scholar
- 344.R. Rong, X. Q. Song, D. X. Cao, and L. L. Guo, “Laplace inverse transformation and asymptotic expansion for n times integrated C-semigroups,” J. Shandong Univ. Sci. Technol. Nat. Sci., 25, No. 2, 109–111 (2006).MathSciNetGoogle Scholar
- 345.A. A. Samarsky, I. P. Gavrilyuk, and V. L. Makarov, “Stability and regularization of three-level difference schemes with unbounded operator coefficients in Banach spaces,” SIAM J. Numer. Anal., 39, No. 2, 708–723 (2001).MathSciNetMATHCrossRefGoogle Scholar
- 346.N. Sanekata, “Some remarks on the abstract Cauchy problem,” Publ. RIMS, Kyoto Univ., 11, 51–65 (1975).Google Scholar
- 347.V. Schuchman, “Complete second order differential equations in Banach spaces,” In: Semigroups of Operators: Theory and Applications (Rio de Janeiro, 2001), 238–255, Optimization Software, New York (2002).Google Scholar
- 348.V. Schuchman and Julio Cesar Ruiz Claeyssen, “Evolution equations of higher order in Banach spaces,” Appl. Anal., 72, No. 3-4, 459–468 (1999).Google Scholar
- 349.S. Schwarz, “The ideal structure of C-semigroups,” Czech. Math. J., 27(102), No. 2, 313–337 (1977).Google Scholar
- 350.H. Serizawa, “Representation formulas for integrated semigroups and sine families,” Aeq. Math., 44, No. 2–3, 278–291 (1992).MathSciNetMATHCrossRefGoogle Scholar
- 351.S.-Y. Shaw, “Ergodic properties of integrated semigroups and resolvent families,” In: International Mathematics Conference ’94 (Kaohsiung, 1994), 171–178, World Sci. Publ., River Edge, NJ (1996).Google Scholar
- 352.S.-Y. Shaw, “Ergodic theorems with rates for r times integrated solution families,” Operator Theory and Related Topics, Vol. II (Odessa, 1997), 359–371, Oper. Theory Adv. Appl., 118, Birkhäuser, Basel (2000).Google Scholar
- 353.S.-Y. Shaw, “On Cesaro and Abel limits of C-semigroups,” Dedicated to the memory of Professor Tsing-Houa Teng, Soochow J. Math., 20, No. 4, 547–553 (1994).Google Scholar
- 354.S.-Y. Shaw, “Uniform ergodic theorems for locally integrable semigroups and pseudoresolvents,” Proc. Am. Math. Soc., 98, No. 1, 61–67 (1986).MathSciNetMATHGoogle Scholar
- 355.S.-Y. Shaw and D.-K. Chyan, “Maximal regularity and bounded semivariation of local Csemigroups,” Preprint (1997).Google Scholar
- 356.S.-Y. Shaw and Ch.-Ch. Kuo, “Generation of local C-semigroups and solvability of the abstract Cauchy problems,” Taiwan. J. Math., 9, No. 2, 291–311 (2005).MathSciNetMATHCrossRefGoogle Scholar
- 357.S.-Y. Shaw and Ch.-Ch. Kuo, “Local C-semigroups and the abstract Cauchy problems,” Preprint (1996).Google Scholar
- 358.S.-Y. Shaw and Y.-Ch. Li, “Characterization and generation of local C-cosine and C-sine functions,” Int. J. Evol. Equ., 1, No. 4, 373–401 (2005).MathSciNetMATHGoogle Scholar
- 359.S.-Y. Shaw and Y.-Ch. Li, “On n times integrated C-cosine functions,” Evolution equations (Baton Rouge, LA, 1992), 393–406, Lecture Notes in Pure and Appl. Math., 168, Dekker, New York (1995).Google Scholar
- 360.S.-Y. Shaw and Y.-Ch. Li, “Representation formulas for C-semigroups,” Semigroup Forum, 46, No. 1, 123–125 (1993).Google Scholar
- 361.J.-H. Shen and G.-Z. Song, “A generalization of C-semigroup,” Northeast. Math. J., 16, No. 4, 417–427 (2000).MathSciNetMATHGoogle Scholar
- 362.J. H. Shen and G. Zh. Song, “General integrated semigroups,” Acta Math. Sci. Ser. A Chin. Ed., 20, No. 4, 480–486 (2000).MathSciNetMATHGoogle Scholar
- 363.J. Shen and G. Song, “The Laplace transform and integrated semigroups,” Nanjing Daxue Xuebao Shuxue Bannian Kan, 14, No. 1, 15–22 (1997).Google Scholar
- 364.Wang Wang Sheng and Chu Gao Ming, “Automatic extensions of local regularized semigroups and local regularized cosine functions,” Proc. Am. Math. Soc., 127, 1651–1663 (1999).Google Scholar
- 365.D. M. Shi and L. Sh. Yang, “Locally equicontinuous C-semigroups,” J. Systems Sci. Math. Sci., 14, No. 2, 121–129 (1994).MathSciNetMATHGoogle Scholar
- 366.J. Shi and S. Cai, “Subgenerators of C-semigroups on l 2,” Anal. Theory Appl., 25, No. 3, 297–300 (2009).MathSciNetMATHCrossRefGoogle Scholar
- 367.Y. Shinohara, “Characterizations of C-semigroups,” Math. J. Okayama Univ., 43, 137–142 (2001).MathSciNetMATHGoogle Scholar
- 368.D. W. Showalter and A. Ben-Israel, “Representation and computation of the generalized inverse of a bounded linear operator between Hilbert spaces,” Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat., 48, 184–194 (1970).Google Scholar
- 369.L. Skula, “On C-semigroups,” Acta Arith., 31, No. 3, 247–257 (1976).MathSciNetMATHCrossRefGoogle Scholar
- 370.Sh. Song, C-semigroups on Banach spaces and functional inequalities,” Seminaire de Probabilites, XXIX, 297–326, Lecture Notes in Math., 1613, Springer, Berlin (1995).Google Scholar
- 371.X. Song, “Spectral mapping theorems for C-semigroups,” J. Math. Res. Exposition, 16, No. 4, 526–530 (1996).MathSciNetMATHGoogle Scholar
- 372.X. Q. Song, A. M. Peng, and C. X. Wang, “Probabilistic approximations for C-semigroups and integrated semigroups,” Nanjing Daxue Xuebao Shuxue Bannian Kan, 20, No. 2, 216–225 (2003).Google Scholar
- 373.M. Sova, “Problémes de Cauchy paraboliques abstraits de classes superieures et les semi-groupes distributions,” Ric. Mat., 18, 215–238 (1969).MathSciNetMATHGoogle Scholar
- 374.B. Straub, “Fractional powers of operators with polynomially bounded resolvent and the semigroups generated by them,” Hiroshima Math. J., 24, No. 3, 529–548 (1994).MathSciNetMATHGoogle Scholar
- 375.G. Z. Sun, “α times integrated C-semigroups and abstract Cauchy problems,” Acta Math. Sinica (Chin. Ser.), 42, No. 4, 757–762 (1999).Google Scholar
- 376.G. Zh. Sun, “Local C-semigroups and their applications to inhomogeneous (ACP) on a finite interval,” Nanjing Daxue Xuebao Shuxue Bannian Kan, 12, No. 1, 21–27 (1995).Google Scholar
- 377.R. K. Sun and Q. R. Liu, “Integrated semigroup methods for solving a class of abstract integro-differential equations,” Pure Appl. Math. (Xi’an), 9, No. 1, 95–99 (1993).MathSciNetGoogle Scholar
- 378.Sh. G. Sun, M. Qi, and L. Kong, “Analytic families of integrated semigroups,” J. Shandong Univ. Sci. Technol. Nat. Sci., 23, No. 4, 94–96 (2004).MathSciNetGoogle Scholar
- 379.G. A. Sviridyuk and V. E. Fedorov, “Linear Sobolev type equations and degenerate semigroups of operators,” Inverse Ill-posed Probl. Ser., VSP, Utrecht (2003), pp. 216.Google Scholar
- 380.G. A. Sviridyuk and V. E. Fedorov, Sobolev-type Linear Equations [in Russian], Chelyab. Gos. Univ., Chelyabinsk (2003), pp. 180.Google Scholar
- 381.G. A. Sviridyuk and V. E. Fedorov, “Semigroups of operators with kernels,” Vestnik Chelyab. Univ. Ser. 3 Mat. Mekh. Inform., No. 1(6), 42–70 (2002).Google Scholar
- 382.G. A. Sviridyuk and N. A. Manakova, “Regular perturbations of a class of linear equations of Sobolev type,” Differ. Uravn., 38, No. 3, 423–425, 432 (2002).Google Scholar
- 383.G. A. Sviridyuk and A. A. Zamyshlyaeva, “The phase spaces of a class of higher-order linear equations of Sobolev type,” Differ. Uravn., 42, No. 2, 252–260, 287 (2006).Google Scholar
- 384.Tosiharu Takenaka and Noboru Okazawa, “Well-posedness of abstract Cauchy problems for second order differential equations,” Isr. J. Math., 69, No. 3, 257–288 (1990).MATHCrossRefGoogle Scholar
- 385.T. Takenaka and S. Piskarev, “Local C-cosine families and n times integrated local cosine families,” Taiwan. J. Math., 8, No. 3, 515–545 (2004).MathSciNetMATHCrossRefGoogle Scholar
- 386.N. Tanaka, “Approximation of integrated semigroups by ‘integrated’ discrete parameter semigroups,” Semigroup Forum, 55, No. 1, 57–67 (1997).Google Scholar
- 387.N. Tanaka, “On perturbation theory for exponentially bounded C-semigroups,” Semigroup Forum, 41, No. 2, 215–236 (1990).Google Scholar
- 388.N. Tanaka, “Holomorphic C-semigroups and holomorphic semigroups,” In: Semigroups and Differential Operators (Oberwolfach, 1988), Semigroup Forum, 38, No. 2, 253–261 (1989).Google Scholar
- 389.N. Tanaka, “Locally Lipschitz continuous integrated semigroups,” Stud. Math., 167, No. 1, 1–16 (2005).MathSciNetMATHCrossRefGoogle Scholar
- 390.N. Tanaka, “On the exponentially bounded C-semigroups,” Tokyo J. Math., 10, No. 1, 107–117 (1987).MathSciNetMATHCrossRefGoogle Scholar
- 391.N. Tanaka, “Perturbation theorems of Miyadera type for locally Lipschitz continuous integrated semigroups,” Stud. Math., 156, No. 2, 177–187 (2003).MathSciNetMATHCrossRefGoogle Scholar
- 392.N. Tanaka and I. Miyadera, “C-semigroups and the abstract Cauchy problem,” J. Math. Anal. Appl., 170, No. 1, 196–206 (1992).MathSciNetMATHCrossRefGoogle Scholar
- 393.N. Tanaka and I. Miyadera, “Exponentially bounded C-semigroups and integrated semigroups,” Tokyo J. Math., 12, No. 1, 99–115 (1989).MathSciNetMATHCrossRefGoogle Scholar
- 394.N. Tanaka and I. Miyadera, “Some remarks on C-semigroups and integrated semigroups,” Proc. Jpn. Acad. Ser. A Math. Sci., 63, No. 5, 139–142 (1987).MathSciNetMATHCrossRefGoogle Scholar
- 395.N. Tanaka and N. Okazawa, “Local C-semigroups and local integrated semigroups,” Proc. London Math. Soc. (3), 61, No. 1, 63–90 (1990).Google Scholar
- 396.H. R. Thieme, “Differentiability of convolutions, integrated semigroups of bounded semivariation, and the inhomogeneous Cauchy problem,” J. Evol. Equ., 8, No. 2, 283–305 (2008).MathSciNetMATHCrossRefGoogle Scholar
- 397.H. R. Thieme, “Integrated semigroups and integrated solutions to abstract Cauchy problems,” J. Math. Anal. Appl., 152, No. 2, 416–447 (1990).MathSciNetMATHCrossRefGoogle Scholar
- 398.H. R. Thieme, “Positive perturbations of dual and integrated semigroups,” Adv. Math. Sci. Appl., 6, No. 2, 445–507 (1996).MathSciNetMATHGoogle Scholar
- 399.H. R. Thieme and H. Vosseler, “A Stieltjes type convolution for integrated semigroups of bounded strong variation and L p-solutions to the abstract Cauchy problem,” Differ. Integral Equ., 15, No. 10, 1171–1218 (2002).MATHMathSciNetGoogle Scholar
- 400.A. N. Tikhonov and V. Ya. Arsenin, Methods for the Solution of Ill-Posed Problems [in Russian], Nauka, Moscow (1979).Google Scholar
- 401.Huang Tingwen, “Local integrated cosine family,” J. Sichuan Univ., Nat. Sci. Ed., 31, No. 4, 442–451 (1994).Google Scholar
- 402.T. Huang and F. Huang, “Holomorphic C-semigroups and their perturbations,” J. Sichuan Univ., Nat. Sci. Ed., 31, No. 3, 289–291 (1994).Google Scholar
- 403.S. P. Toropova, “A relation between semigroups with a singularity and integrated semigroups,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 3, 69–77 (2003).Google Scholar
- 404.C. C. Travis and G. F. Webb, “Compactness, regularity, and uniform continuity properties of strongly continuous cosine families,” Houston J. Math., 3, 555–567 (1977).MathSciNetMATHGoogle Scholar
- 405.A. V. Urazaeva and V. E. Fedorov, “On the well-posedness of the prediction-control problem for some systems of equations,” Mat. Zametki, 85, No. 3, 440–450 (2009).MathSciNetMATHCrossRefGoogle Scholar
- 406.A. V. Urazaeva and V. E. Fedorov, “Prediction-control problems for some systems of equations of fluid dynamics,” Differ. Uravn., 44, No. 8, 1111–1119 (2008).MathSciNetMATHGoogle Scholar
- 407.T. Ushijima, “Approximation theory for semigroups of linear operators and its application to approximation of wave equations,” Jpn. J. Math., 1, 185–224 (1975/76).MATHCrossRefGoogle Scholar
- 408.G. Vainikko, “Approximative methods for nonlinear equations (two approaches to the convergence problem),” Nonlinear Anal., 2, 647–687 (1978).MathSciNetMATHCrossRefGoogle Scholar
- 409.G. M. Vajnikko and A. Yu. Veretennikov, Iterative Procedures in Ill-Posed Problems [in Russian], Nauka, Moscow (1986).Google Scholar
- 410.F. Vajzović and R. Vugdalić, “Two exponential formulas for α times integrated semigroups (α ∈ ℝ+),” Sarajevo J. Math., 1(13), No. 1, 93–116 (2005).Google Scholar
- 411.V. V. Vasiliev, The Theory of Semigroups and Cosine Operator-Functions [in Russian], VSU, Voronezh. (2005).Google Scholar
- 412.V. V. Vasil’ev and L. V. Khlivnenko, Integrated semigroups [in Russian], VSU, Voronezh (2009).Google Scholar
- 413.V. V. Vasiliev and S. I. Piskarev, Differential Equations in Banach Spaces I. Semigroup Theory [in Russian], Moscow State University Publish House, Moscow (1996).Google Scholar
- 414.V. V. Vasiliev and S. I. Piskarev, “Differential equations in Banach spaces II. Cosine-operator functions,” J. Math. Sci., Vol. 122, No. 2, 3055–3174 (2004).MathSciNetMATHCrossRefGoogle Scholar
- 415.M. Voicu, “Integrated semigroups and Cauchy problems on locally convex spaces,” Rev. Roum. Math. Pures Appl., 39, No. 1, 63–78 (1994).MathSciNetMATHGoogle Scholar
- 416.R. Vugdalić, “A formula for n times integrated semigroups (n ∈ ℕ),” Sarajevo J. Math., 4(16), No. 1, 125–132 (2008).Google Scholar
- 417.R. Vugdalić, “Representation theorems for integrated semigroups,” Sarajevo J. Math., 1(14), No. 2, 243–250 (2005).Google Scholar
- 418.J. P.Wan, “Product perturbations of C-semigroups and integral semigroups,” J. Huazhong Univ. Sci. Tech., 25, suppl. I, 102–105 (1997).Google Scholar
- 419.C. Wang and X. Song, “Integrated C-semigroups and abstract integro-differential equations,” Nanjing Daxue Xuebao Shuxue Bannian Kan, 23, No. 2, 217–224 (2006).Google Scholar
- 420.C. X. Wang and X. Q. Song, “n times integrated C-semigroups and strong solutions to nonhomogeneous abstract Cauchy problems,” Acta Anal. Funct. Appl., 8, No. 3, 247–251 (2006).MathSciNetGoogle Scholar
- 421.C. X. Wang, X. Q. Song, and D. X. Cao, “n times integrated C-semigroups and the abstract Cauchy problem,” Pure Appl. Math. (Xi’an), 22, No. 3, 365–371 (2006).Google Scholar
- 422.C. X. Wang, X. Q. Song, and X. Z. Zhang, “A representation of integrated C-semigroups,” J. Xuzhou Norm. Univ. Nat. Sci. Ed., 23, No. 1, 24–26 (2005).MathSciNetGoogle Scholar
- 423.J. J. Wang and Y. R. Li, “Perturbations and approximations of Markov integrated semigroups,” Acta Anal. Funct. Appl., 13, No. 2, 121–123 (2011).MathSciNetMATHGoogle Scholar
- 424.Sh. W. Wang, “Mild integrated C-existence families,” Stud. Math., 112, No. 3, 251–266 (1995).MathSciNetMATHCrossRefGoogle Scholar
- 425.Sh. W. Wang, “Quasi-distribution semigroups and integrated semigroups,” J. Funct. Anal., 146, No. 2, 352–381 (1997).MathSciNetMATHCrossRefGoogle Scholar
- 426.Sh. W. Wang, “Hille–Yosida type theorems for local regularized semigroups and local integrated semigroups,” Stud. Math., 152, No. 1, 45–67 (2002).MathSciNetMATHCrossRefGoogle Scholar
- 427.Sh. W. Wang and M. Ch. Gao, “Automatic extensions of local regularized semigroups and local regularized cosine functions,” Proc. Am. Math. Soc., 127, No. 6, 1651–1663 (1999).MathSciNetMATHCrossRefGoogle Scholar
- 428.Sh. W. Wang, M. Y.Wang, and Y. Shen, “Perturbation theorems for local integrated semigroups and their applications,” Stud. Math., 170, No. 2, 121–146 (2005).MathSciNetMATHCrossRefGoogle Scholar
- 429.X.-Y. Wen and Y.-R. Li, “Stochastic monotone Markov integrated semigroups,” Math. Appl. (Wuhan), 22, No. 4, 690–696 (2009).MathSciNetMATHGoogle Scholar
- 430.David VernonWidder, “The Laplace transform,” Princeton Mathematical Series, V. 6. Princeton University Press, Princeton, New Jersey (1941).Google Scholar
- 431.B. Wu, “Integrated semigroups of bounded linear operators and their applications to inverse problems,” Thesis (Ph.D.), The Claremont Graduate University (1992).Google Scholar
- 432.T.-J. Xiao and J. Liang, “Approximations of Laplace transforms and integrated semigroups,” J. Funct. Anal., 172, No. 1, 202–220 (2000).MathSciNetMATHCrossRefGoogle Scholar
- 433.T. Xiao and J. Liang, “Integrated semigroups, cosine families and higher order abstract Cauchy problems,” In: Functional Analysis in China, 351–365, Math. Appl., 356, Kluwer Acad. Publ., Dordrecht (1996).Google Scholar
- 434.T. Xiao and J. Liang, “Laplace transforms and integrated, regularized semigroups in locally convex spaces,” J. Funct. Anal., 148, No. 2, 448–479 (1997).MathSciNetMATHCrossRefGoogle Scholar
- 435.T. Xiao and J. Liang, “Widder–Arendt theorem and integrated semigroups in locally convex space,” Sci. China Ser. A, 39, No. 11, 1121–1130 (1996).MathSciNetMATHGoogle Scholar
- 436.L. H. Xie and M. Q. Li, “Weak almost periodicity of C-semigroups,” Dianzi Keji Daxue Xuebao, 33, No. 2, 218–220 (2004).Google Scholar
- 437.L. Xie, M. Li, and F. Huang, “Asymptotic almost periodicity of C-semigroups,” Int. J. Math. Math. Sci., No. 2, 65–73 (2003).Google Scholar
- 438.G.-J. Yang, “α times integrated semigroups and singular equations,” Southeast Asian Bull. Math., 23, No. 2, 309–315 (1999).MathSciNetGoogle Scholar
- 439.Y. T. Yang and H. X. Zhao, “Kato perturbations of generators of analytic C-semigroups,” J. Zhengzhou Univ. Nat. Sci. Ed., 45, No. 1, 15–18 (2013).MathSciNetGoogle Scholar
- 440.J. Q. Yao, “The adjoint semigroups of exponentially bounded C-semigroups,” J. Syst. Sci. Math. Sci., 19, No. 3, 319–322 (1999).MathSciNetMATHGoogle Scholar
- 441.W. Sh. Y¨u and A. Sh. Xu, “C-semigroups and the solutions of abstract functional-differential equations with infinite delay,” Sichuan Daxue Xuebao, 32, No. 2, 101–108 (1995).Google Scholar
- 442.R. X. Zhao, “Smooth distribution semigroups and integrated semigroups: The degenerate case,” Chinese Ann. Math. Ser. A, 21, No. 2, 175–188 (2000); translation in Chinese J. Contemp. Math., 21, No. 2, 133–148 (2000).Google Scholar
- 443.H. X. Zhao and Q. R. Liu, “Local integrated C-semigroups and the abstract Cauchy problems. III,” Pure Appl. Math. (Xi’an), 12, No. 1, 53–58 (1996).Google Scholar
- 444.W.-Q. Zhao and Y.-R. Li, “Restriction of Markov integrated semigroups and generation of increasing integrated semigroups,” Acta Anal. Funct. Appl., 7, No. 2, 137–145 (2005).MathSciNetMATHGoogle Scholar
- 445.Q. Zheng, “Applications of integrated semigroups to higher order abstract Cauchy problems,” Syst. Sci. Math. Sci., 5, No. 4, 316–327 (1992).MathSciNetMATHGoogle Scholar
- 446.Q. Zheng, “Integrated semigroups and abstract Cauchy problems,” Adv. Math., 21, No. 3, 257–273 (1992).MathSciNetMATHGoogle Scholar
- 447.Q. Zheng, “Perturbations and approximations of integrated semigroups,” Acta Math. Sinica (N.S.), 9, No. 3, 252–260 (1993).Google Scholar
- 448.Q. Zheng, “Some classes of operator matrices that generate integrated semigroups,” Acta Math. Sinica, 36, No. 4, 456–467 (1993).MathSciNetGoogle Scholar
- 449.Quan Zheng and Yansong Lei, “Exponentially bounded C-semigroup and integrated semigroup with nondensely defined generators. I: Approximation,” Acta Math. Sci., 13, No. 3, 251–260 (1993).MathSciNetMATHCrossRefGoogle Scholar
- 450.Q. Zheng and Y. S. Lei, “Exponentially bounded C-semigroups and integrated semigroups with non-densely defined generators. III. Analyticity,” Acta Math. Sci. (English Ed.), 14, No. 1, 107–119 (1994).Google Scholar
- 451.Q. Zheng and Y. S. Lei, “Integrated C-semigroups,” J. Huazhong Univ. Sci. Tech., 20, No. 5, 181–187 (1992).MathSciNetMATHGoogle Scholar
- 452.Quan Zheng and Yansong Lei, “Exponentially bounded C-semigroup and integrated semigroup with nondensely defined generators. II: Perturbation,” Acta Math. Sci., 13, 428–434 (1993).Google Scholar
- 453.Q. Zheng and M. Li, “Regularized semigroups and non-elliptic differential operators,” Science Press, Beijing, China (2014).Google Scholar
- 454.Quan Zheng and Liping Liu, “Almost periodic regularized groups, semigroups, and cosine functions,” J. Math. Anal. Appl., 197, No. 1, 90–112 (1996).MathSciNetMATHCrossRefGoogle Scholar
- 455.X. Zou, “A generation theorem for local C-semigroups,” Nanjing Daxue Xuebao Ziran Kexue Ban, 34, No. 4, 406–411 (1998).Google Scholar
- 456.H. Zwart, “Is A −1 an infinitesimal generator? Perspectives in operator theory,” In: Papers of the workshop on operator theory, Warsaw, Poland, April 19–May 3, 2004, Polish Academy of Sciences, Institute of Mathematics, Warsaw; Banach Center Publ., 75, 303–313 (2007).Google Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2018