On the Generic Structure and Stability of Stackelberg Equilibria

  • Alberto BressanEmail author
  • Yilun Jiang


We consider a noncooperative Stackelberg game, where the two players choose their strategies within domains \(X\subseteq {{\mathbb {R}}}^m\) and \(Y\subseteq {{\mathbb {R}}}^n\). Assuming that the cost functions FG for the two players are sufficiently smooth, we study the structure of the best reply map for the follower and the optimal strategy for the leader. Two main cases are considered: either \(X=Y=[0,1]\), or \(X={{\mathbb {R}}}, Y={{\mathbb {R}}}^n\) with \(n\ge 1\). Using techniques from differential geometry, including a multi-jet version of Thom’s transversality theorem, we prove that, for an open dense set of cost functions \(F\in {{\mathcal {C}}}^2\) and \(G\in {{\mathcal {C}}}^3\), the Stackelberg equilibrium is unique and is stable w.r.t. small perturbations of the two cost functions.


Noncooperative game Stackelberg equilibrium Stability Generic properties 

Mathematics Subject Classification

91A10 91B50 58K25 37C20 



  1. 1.
    von Stackelberg, H.: The Theory of the Market Economy. Oxford University Press, Oxford (1952)Google Scholar
  2. 2.
    Basar, T., Olsder, G.J.: Dynamic Noncooperative Game Theory, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (1999)zbMATHGoogle Scholar
  3. 3.
    Leitmann, G.: On generalized Stackelberg strategies. J. Optim. Theory Appl. 26, 637–643 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Breton, M., Alj, A., Haurie, A.: Sequential Stackelberg equilibrium in two-person games. J. Optim. Theory Appl. 59, 71–97 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bressan, A.: Noncooperative differential games. Milan J. Math. 79, 357–427 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Lignola, M.B., Morgan, J.: Topological existence and stability for Stackelberg problems. J. Optim. Theory Appl. 84, 145–169 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Marhfour, A.: Mixed solutions for weak Stackelberg problems: existence and stability results. J. Optim. Theory Appl. 105, 417–440 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Simaan, M., Cruz, J.: On the Stackelberg strategies in nonzero-sum games. J. Optim. Theory Appl. 11, 533–555 (1973)CrossRefzbMATHGoogle Scholar
  9. 9.
    Dontchev, A.L., Zolezzi, T.: Well-Posed Optimization Problems. Springer, Berlin (1993)CrossRefzbMATHGoogle Scholar
  10. 10.
    Mallozzi, L., Morgan, J.: Weak Stackelberg problem and mixed solutions under data perturbations. Optimization 32, 269–290 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Bloom, J.M.: The Local Structure of Smooth Maps of Manifolds. B.A. Thesis, Harvard U (2004)Google Scholar
  12. 12.
    Golubitsky, M., Guillemin, V.: Stable Mappings and Their Singularities. Springer, New York (1973)CrossRefzbMATHGoogle Scholar
  13. 13.
    Conzález-Alcón, C., Borm, P., Hendrickx, R., et al.: A taxonomy of best-reply multifunctions in \(2\times 2\times 2\) trimatrix games. TOP 15(2), 297–306 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Evans, L.C.: Partial Differential Equations, 2nd edn. American Mathematical Society, Providence (2010)zbMATHGoogle Scholar
  15. 15.
    Dieudonné, J.: Foundations of Modern Analysis. Academic Press, New York (1969)zbMATHGoogle Scholar
  16. 16.
    Arnold, V.: Catastrophe Theory, 3rd edn. Springer, Berlin (1992)CrossRefGoogle Scholar
  17. 17.
    Bressan, A., Jiang, Y.: Self-consistent feedback Stackelberg solutions for infinite horizon stochastic games. Dynam. Games Appl. (2019, submitted) Google Scholar
  18. 18.
    Sard, A.: The measure of critical values of differentiable maps. Bull. Am. Math. Soc. 48, 883–890 (1942)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsPenn State UniversityUniversity ParkUSA

Personalised recommendations