Advertisement

Frequency-Hopping Code Design for Target Detection via Optimization Theory

  • Yu YaoEmail author
  • Junhui Zhao
  • Lenan Wu
Article

Abstract

We present a signaling scheme for information embedding into the illumination of radar using frequency-hopping pulses. A frequency-hopping-based joint radar-communication system enables implementing a primary radar operation and a secondary communication function simultaneously. Then, we consider the problems of radar codes optimization under a peak-to-average-power ratio and an energy constraint. These radar codes design problems can be converted into non-convex quadratic programs with a finite or an infinite number of quadratic constraints. All problems are proved to be NP-hard optimization problems. Therefore, we develop optimization approaches, resorting to semi-definite programming relaxation technique along with to the idea of trigonometric polynomials, offering expected approximate solutions with a polynomial time calculation burden. We assess the capability of the proposed schemes, considering both the detection probability and the robustness in correspondence of Doppler shifts offered by the Neyman–Pearson detector. Simulation results show an improvement in detection performance as the average signal-to-noise ratio value increases, while still maintaining low symbol error rates between the proposed system nodes.

Keywords

Joint radar communication Radar code design Information embedding Semi-definite programming relaxation Non-convex quadratic optimization Nonnegative trigonometric polynomials 

Mathematics Subject Classification

15A69 81P40 90C3 

Notes

Acknowledgements

This work was supported by the national Natural Science Foundation of China (61761019, 61861017, 61861018, 61862024) and the Natural Science Foundation of Jiangxi Province (Jiangxi Province natural Science Fund) (20181BAB211014, 20181BAB211013) and Foundation of Jiangxi Educational Committee of China (GJJ180352).

References

  1. 1.
    Ciuonzo, D., De Maio, A., Foglia, G., Piezzo, M.: Intrapulse radar-embedded communications via multi-objective optimization. IEEE Trans. Aerosp. Electron. Syst. 51(1), 2960–2974 (2015)Google Scholar
  2. 2.
    Chiriyath, A.R., Paul, B., Jacyna, G.M., Bliss, D.W.: Inner bounds on performance of radar and communications co-existence. IEEE Trans. Aerosp. Electron. Syst. 46(1), 1185–1200 (2010)zbMATHGoogle Scholar
  3. 3.
    Yao, Y., Zhao, J., Wu, L.: Adaptive waveform design for MIMO radar-communication transceiver. Sensors 18(6), 1957 (2018)Google Scholar
  4. 4.
    Geng, Z., Deng, H., Himed, B.: Adaptive radar beamforming for interference mitigation in radar-wireless spectrum sharing. IEEE Signal Process. Lett. 22(4), 484–488 (2015)Google Scholar
  5. 5.
    Blunt, S.D., Yatham, P., Stiles, J.: Intrapulse radar-embedded communications. IEEE Trans. Aerosp. Electron. Syst. 46(3), 1185–1200 (2010)Google Scholar
  6. 6.
    Li, B., Petropulu, A.P., Trappe, W.: Optimum co-design for spectrum sharing between matrix completion based MIMO radars and a MIMO communication system. IEEE Trans. Signal Process. 64(2), 4562–4575 (2016)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Aubry, A., De Maio, A., Huang, Y., Piezzo, M., Farina, A.: A new radar waveform design algorithm with improved feasibility for spectral coexistence. IEEE Trans. Aerosp. Electron. Syst. 51(2), 1029–1038 (2015)Google Scholar
  8. 8.
    Chiriyath, A., Paul, N., Jacyna, G., Bliss, D.W.: Inner bounds on performance of radar and communications co-existence. IEEE Trans. Signal Process. 64(2), 464–474 (2016)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Li, B., Petropulu, A.P., Trappe, W.: Optimum co-design for spectrum sharing between matrix completion based MIMO radars and a MIMO communication system. IEEE Trans. Signal Process. 64(17), 4562–4575 (2016)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Li, B., Petropulu, A.P., Trappe, W.: Analysis of symbol-design strategies for intrapulse radar-embedded communications. IEEE Trans. Aerosp. Electron. Syst. 51(4), 2914–2931 (2015)Google Scholar
  11. 11.
    Ciuonzo, D., De Maio, A., Foglia, A., Piezzo, M.: Intrapulse radar embedded communications via multiobjective optimization. IEEE Trans. Aerosp. Electron. Syst. 51(4), 2960–2974 (2015)Google Scholar
  12. 12.
    Han, L., Wu, K.: Joint wireless communication and radar sensing systems-state of the art and future prospects. IET Microw. Antennas Propag. 7(11), 876–885 (2013)Google Scholar
  13. 13.
    Deng, H., Himed, B.: Interference mitigation processing for spectrum sharing between radar and wireless communications systems. IEEE Trans. Aerosp. Electron. Syst. 49(3), 1911–1919 (2013)Google Scholar
  14. 14.
    Wang, L., McGeehan, J., Williams, C., Doufexi, A.: Application of cooperative sensing in radar-communications coexistence. IET Commun. 2(6), 856–868 (2018)Google Scholar
  15. 15.
    Hassanien, A., Amin, M. G., Zhang, Y. D., Ahmad, F.: Dual function radar-communications using phase-rotational invariance. In: Proceedings of the European Signal Processing Conference, Nice, France, pp. 1346–1350 (2015)Google Scholar
  16. 16.
    Hassanien, A., Amin, M.G., Zhang, Y.D., Ahmad, F.: Dual-function radar-communications: information embedding using sidelobe control and waveform diversity. IEEE Trans. Signal Process. 64(8), 2168–2181 (2016)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Hassanien, A., Amin, M.G., Zhang, Y.D., Ahmad, F.: Signaling strategies for dual-function radar communications: an overview. IEEE Trans. Aerosp. Electron. Syst. 31(10), 36–45 (2016)Google Scholar
  18. 18.
    Hassanien, A., Amin, M.G., Zhang, Y.D., Ahmad, F.: Phase-modulation based dual-function radar-communications. IET Radar Sonar Navig. 10(8), 1411–1421 (2016)Google Scholar
  19. 19.
    Hassanien, A., Amin, M. G., Zhang, Y. D., Himed, B.: A dual-function MIMO radar-communications system using PSK modulation. In: European Signal Processing Conference, Budapest, Hungary, pp. 1613–1617 (2016)Google Scholar
  20. 20.
    Hassanien, A., Himed, B., Rigling, B. D.: A dual-function MIMO radar-communications system using frequency-hopping waveforms. In: IEEE Radar Conference, Seattle, WA, USA, pp. 1721–1725 (2017)Google Scholar
  21. 21.
    Nehorai, A., Gini, F., Greco, M.S., Suppappola, A.P., Rangaswamy, M.: Special issue on adaptive waveform design for agile sensing and communications. IEEE J. Sel. Topics Signal Process. 1(1), 2-213 (2007)Google Scholar
  22. 22.
    Calderbank, R., Howard, S., Moran, B.: Waveform diversity in radar signal processing. IEEE Signal Process. Mag. 26(1), 32–41 (2009)Google Scholar
  23. 23.
    Cochran, D., Suvorova, S., Howard, S., Moran, B.: Waveform libraries. IEEE Signal Process. Mag. 26(1), 12–21 (2009)Google Scholar
  24. 24.
    Nehorai, A., Gini, F., Greco, M.S., Papandreou-Suppappola, A., Rangaswamy, M.: Adaptive waveform design for agile sensing and communications. IEEE J. Sel. Topics Signal Process. 1(1), 2–5 (2007)Google Scholar
  25. 25.
    Farina, A., Studer, F.A.: Detection with high resolution radar: great promise, big challenge. Microw. J. 34(5), 263–273 (1991)Google Scholar
  26. 26.
    Pillai, S.U., Oh, H.S., Youla, D.C., Guerci, J.R.: Optimum transmit-receiver design in the presence of signal-dependent interference and channel noise. IEEE Trans. Inf. Theory 46(2), 577–584 (2000)zbMATHGoogle Scholar
  27. 27.
    Kay, S.: Optimal signal design for detection of point targets in stationary Gaussian clutter/reverberation. IEEE J. Sel. Topics Signal Process. 1(1), 31–41 (2007)Google Scholar
  28. 28.
    Li, J., Guerci, J.R., Xu, L.: Signal waveform’s optimal-under-restriction design for active sensing. IEEE Signal Process. Lett. 13(9), 565–568 (2006)Google Scholar
  29. 29.
    De Maio, A., De Nicola, S., Huang, Y., Zhang, S., Farina, A.: Code design to optimize radar detection performance under accuracy and similarity constraints. IEEE Trans. Signal Process. 56(11), 5618–5629 (2008)MathSciNetzbMATHGoogle Scholar
  30. 30.
    De Maio, A., De Nicola, S., Huang, Y., Palomar, D., Zhang, S., Farina, A.: Code design for radar STAP via optimization theory. IEEE Trans. Signal Process. 58(2), 679–694 (2010)MathSciNetzbMATHGoogle Scholar
  31. 31.
    De Maio, A., Huang, Y., Piezzo, M.: A Doppler robust max–min approach to radar code design. IEEE Trans. Signal Process. 58(9), 4943–4947 (2010)MathSciNetzbMATHGoogle Scholar
  32. 32.
    De Maio, A., De Nicola, S., Huang, Y., Luo, Z.Q., Zhang, S.: Design of phase codes for radar performance optimization with a similarity constraint. IEEE Trans. Signal Process. 57(2), 610–621 (2009)MathSciNetzbMATHGoogle Scholar
  33. 33.
    De Maio, A., Huang, Y., Piezzo, M., Zhang, S., Farina, A.: Design of optimized radar codes with a peak to average power ratio constraint. IEEE Trans. Signal Process. 59(6), 2683–2697 (2011)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problem using semi-definite programming. J. ACM 42(1), 1115–1145 (1995)zbMATHGoogle Scholar
  35. 35.
    Roh, T., Vandenberghe, L.: Discrete transforms, semi-definite programming, and sum-of-squares representations of nonnegative polynomials. SIAM J. Optim. 16(4), 939–964 (2006)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Luo, Z.Q., Sidiropoulos, N.D., Tseng, P., Zhang, S.: Approximation bounds for quadratic optimization with homogeneous quadratic constraints. SIAM J. Optim. 18(1), 1–28 (2007)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Nemirovski, A., Roos, C., Terlaky, T.: On maximization of quadratic form over intersection of ellipsoids with common center. Math. Program. 86(3), 463–473 (1999)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Sidiropoulos, N., Davidson, T., Luo, Z.Q.: Transmit beamforming for physical-layer multicasting. IEEE Trans. Signal Process. 54(6), 2239–2251 (2006)zbMATHGoogle Scholar
  39. 39.
    So, A., Zhang, J., Ye, Y.: On approximating complex quadratic optimization problems via semidefinite programming relaxations. Math. Program. Ser B 110(1), 93–110 (2007)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming (web page and software) 2008 [Online]. Available: http://stanford.edu/~boyd/cvx
  41. 41.
    Zhang, S.: Quadratic maximization and semi-definite relaxation. Math. Program. Ser. A 87(3), 453–465 (2000)zbMATHGoogle Scholar
  42. 42.
    Horst, R., Pardalos, P.M.: Handbook of Global Optimization. Springer, Berlin (1995)zbMATHGoogle Scholar
  43. 43.
    Zhang, S., Huang, Y.: Complex quadratic optimization and semidefinite programming. SIAM J. Optim. 16(3), 871–890 (2006)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Goemans, M.X., Williamson, D.P.: Approximation algorithms for MAX-3-CUT and other problems via complex semidefinite programming. J. Comput. Syst. Sci. 68(2), 442–470 (2004)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization, Second Edition, Nonconvex Optimization and its Applications-Volume 2. Springer, Berlin (2000)Google Scholar
  46. 46.
    Pardalos, P.M., Romeijn, E.: Handbook of Global Optimization-Volume 2, Heuristic Approaches. Springer, Berlin (2002)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.East China Jiaotong UniversityNanchangChina
  2. 2.Southeast UniversityNanjingChina

Personalised recommendations