Characterizations of Multiobjective Robustness via Oriented Distance Function and Image Space Analysis

  • Qamrul Hasan AnsariEmail author
  • Elisabeth Köbis
  • Pradeep Kumar Sharma


In this paper, we characterize different kinds of multiobjective robustness concepts via the well-known oriented distance function. By using characterizations of several set relations via the oriented distance function, together with the help of image space analysis, we construct some suitable subsets of the scalarization image space to obtain equivalent characterizations for various robust solutions for uncertain multiobjective optimization problems based on a set approach.


Oriented distance function Set relations Image space analysis Uncertain multiobjective optimization Robustness 

Mathematics Subject Classification

49J53 90C29 90C30 90C31 



Authors are grateful to the referees for their valuable suggestions and comments to improve the first draft of this paper. In this paper, Q. H. Ansari was supported by a research Grant of DST-SERB No. EMR/2016/005124.


  1. 1.
    Soyster, A.L.: Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 21, 1154–1157 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)CrossRefzbMATHGoogle Scholar
  3. 3.
    Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005)zbMATHGoogle Scholar
  4. 4.
    Ehrgott, M., Ide, J., Schöbel, A.: Minmax robustness for multi-objective optimization problems. Eur. J. Oper. Res. 239, 17–31 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Khan, A.A., Tammer, Chr, Zălinescu, C.: Set-valued Optimization: An Introduction with Applications. Springer, Berlin (2015)CrossRefzbMATHGoogle Scholar
  6. 6.
    Ansari, Q.H., Köbis, E., Yao, J.-C.: Vector Variational Inequalities and Vector Optimization: Theory and Applications. Springer, Berlin (2018)CrossRefzbMATHGoogle Scholar
  7. 7.
    Eichfelder, G., Krüger, C., Schöbel, A.: Decision uncertainty in multiobjective optimization. J. Glob. Optim. 69, 485–510 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ide, J., Köbis, E.: Concepts of efficiency for uncertain multi-objective optimization problems based on set order relations. Math. Methods Oper. Res. 80(1), 99–127 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ide, J., Schöbel, A.: Robustness for uncertain multi-objective optimization: a survey and analysis of different concepts. OR Spectr. 38, 235–271 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ide, J., Köbis, E., Kuroiwa, D., Schöbel, A., Tammer, C.: The relationship between multi-objective robustness concepts and set-valued optimization. Fixed Point Theory Appl. 2014, 83 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Wei, H.Z., Chen, R.C., Li, S.J.: A unified characterization of multiobjective robustness via separation. J. Optim. Theory Appl. 179(1), 86–102 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Wiecek, M., Dranichak, G.: Robust multiobjective optimization for decision making under uncertainty and conflict. In: Gupta, A., Capponi, A. (eds.) Optimization Challenges in Complex, Networked, and Risky Systems, pp. 84–114. INFORMS, Catonsville (2016)CrossRefGoogle Scholar
  13. 13.
    Delfour, M.C., Zolésio, J.P.: Shape analysis via oriented distance functions. J. Funct. Anal. 123, 129–201 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Delfour, M.C., Zolésio, J.P.: Oriented distance function and its evolution equation for initial sets with thin boundary. SIAM J. Control Optim. 42, 2286–2304 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Delfour, M.C., Zolésio, J.P.: Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, 2nd edn. SIAM, Philadelphia (2001)zbMATHGoogle Scholar
  16. 16.
    Ansari, Q.H., Köbis, E., Sharma, P.K.: Characterizations of set relations with respect to variable domination structures via oriented distance function. Optimization 67(9), 1389–1407 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Chen, J., Ansari, Q.H., Yao, J.-C.: Characterization of set order relations and constrained set optimization problems via oriented distance function. Optimization 66(11), 1741–1754 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hiriart-Urruty, J.B.: Tangent cone, generalized gradients and mathematical programming in Banach spaces. Math. Oper. Res. 4, 79–97 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zhao, H.: A fast sweeping method for Eikonal equations. Math. Comput. 74, 603–627 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Fuhrmann, A., Sobottka, G., Gross, C.: Abstract distance fields for rapid collision detection in physically based modeling. In: Proceedings of International Conference Graphicon (2003)Google Scholar
  21. 21.
    Boczko, E., DiLullo, A., Young, T.: Signed distance functions: a new tool in binary classification. arXiv:CS.LG/0511105 (2005)
  22. 22.
    Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2003)CrossRefzbMATHGoogle Scholar
  23. 23.
    Zaffaroni, A.: Degrees of efficiency and degrees of minimality. SIAM J. Control Optim. 42, 1071–1086 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Giannessi, F.: Constrained Optimization and Image Space Analysis, Separation of Sets and Optimality Conditions, vol. 1. Springer, Berlin (2005)zbMATHGoogle Scholar
  25. 25.
    Jahn, J., Ha, T.X.D.: New order relations in set optimization. J. Optim. Theory Appl. 148, 209–236 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Liu, C.G., Ng, K.F., Yang, W.H.: Merit functions in vector optimization. Math. Program. Ser. A 119, 215–237 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Köbis, E.: On robust optimization: a unified approach to robustness using a nonlinear scalarizing functional and relations to set optimization. Ph.D. thesis, Martin-Luther-University Halle-Wittenberg (2014)Google Scholar
  28. 28.
    Chen, J.W., Köbis, E., Köbis, M.A., Yao, J.C.: Image space analysis for constrained inverse vector variational inequalities via multiobjective optimization. J. Optim. Theory Appl. 177, 816–834 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Chen, J.W., Li, S.J., Wan, Z., Yao, J.C.: Vector variational-like inequalities with constraints: separation and alternative. J. Optim. Theory Appl. 166, 460–479 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Giannessi, F.: Theorems of alternative, quadratic programs and complementarity problems. In: Cottle, R.W., Giannessi, F., Lions, J.L. (eds.) Variational Inequalities and Complementarity Problems, pp. 151–186. Wiley, New York (1980)Google Scholar
  31. 31.
    Giannessi, F.: Theorems of the alternative and optimality conditions. J. Optim. Theory Appl. 60, 331–365 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Giannessi, F.: Semidifferentiable functions and necessary optimality conditions. J. Optim. Theory Appl. 60, 191–241 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Li, J., Huang, N.J.: Image space analysis for variational inequalities with cone constraints and applications to traffic equilibria. Sci. China Math. 55, 851–868 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Li, S.J., Xu, Y.D., Zhu, S.K.: Nonlinear separation approach to constrained extremum problems. J. Optim. Theory Appl. 154, 842–856 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsAligarh Muslim UniversityAligarhIndia
  2. 2.Department of Mathematics and StatisticsKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  3. 3.Institute of MathematicsMartin-Luther-University Halle-WittenbergHalle (Saale)Germany

Personalised recommendations