Advertisement

Proper or Weak Efficiency via Saddle Point Conditions in Cone-Constrained Nonconvex Vector Optimization Problems

  • Fabián Flores-BazánEmail author
  • Giandomenico Mastroeni
  • Cristián Vera
Article

Abstract

Motivated by many applications (for instance, some production models in finance require infinity-dimensional commodity spaces, and the preference is defined in terms of an ordering cone having possibly empty interior), this paper deals with a unified model, which involves preference relations that are not necessarily transitive or reflexive. Our study is carried out by means of saddle point conditions for the generalized Lagrangian associated with a cone-constrained nonconvex vector optimization problem. We establish a necessary and sufficient condition for the existence of a saddle point in case the multiplier vector related to the objective function belongs to the quasi-interior of the polar of the ordering set. Moreover, exploiting suitable Slater-type constraints qualifications involving the notion of quasi-relative interior, we obtain several results concerning the existence of a saddle point, which serve to get efficiency, weak efficiency and proper efficiency. Such results generalize, to the nonconvex vector case, existing conditions in the literature. As a by-product, we propose a notion of properly efficient solution for a vector optimization problem with explicit constraints. Applications to optimality conditions for vector optimization problems are provided with particular attention to bicriteria problems, where optimality conditions for efficiency, proper efficiency and weak efficiency are stated, both in a geometric form and by means of the level sets of the objective functions.

Keywords

Proper efficiency Quasi-relative interior Saddle point Nonconvex vector optimization 

Mathematics Subject Classification

90C29 90C46 49A52 49B27 90C31 

Notes

Acknowledgements

The research, for the first author, was supported in part by CONICYT-Chile through FONDECYT 118-1316 and PIA/Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento AFB170001.

References

  1. 1.
    Flores-Bazán, F., Mastroeni, G.: Strong duality in cone constrained nonconvex optimization. SIAM J. Optim. 23, 153–169 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Flores-Bazán, F., Echegaray, W., Flores-Bazán, F., Ocaña, E.: Primal or dual strong duality in nonconvex optimization and a class of quasiconvex problems having zero duality gap. J. Glob. Optim. 69, 823–845 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Giannessi, F.: Constrained Optimization and Image Space Analysis. Springer, New York (2005)zbMATHGoogle Scholar
  4. 4.
    Giannessi, F.: Theorems of the alternative and optimality conditions. J. Optim. Theory Appl. 60, 331–365 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fullerton, R.E., Braunschweiger, C.C.: Quasi-interior points of cones. Technical Report No. 2, University of Delaware, Department of Mathematics (1963)Google Scholar
  6. 6.
    Borwein, J.M., Lewis, A.S.: Partially finite convex programming, part I: quasi relative interiors and duality theory. Math. Program. Ser. A 57(1992), 15–48 (1992)CrossRefzbMATHGoogle Scholar
  7. 7.
    Borwein, J.M., Goebel, R.: Notions of relative interior in Banach spaces. J. Math. Sci. 115, 2542–2553 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cammaroto, F., Di Bella, B.: Separation theorem based on the quasirelative interior in convex optimization. J. Optim. Theory Appl. 125, 223–229 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bot, R.I., Csetnek, E.R., Wanka, G.: Regularity conditions via quasi-relative interior in convex programming. SIAM J. Optim. 19, 217–233 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Flores-Bazán, F., Flores-Bazán, F., Vera, C.: Gordan-type alternative theorems and vector optimization revisited. In: Ansari, Q.H., Yao, J.C. (eds.) Recent Developments in Vector Optimization, pp. 29–59. Springer, Berlin (2012)CrossRefGoogle Scholar
  11. 11.
    Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing Co., Inc., River Edge (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    Zǎlinescu, C.: On the use of quasi-relative interior in optimization. Optimization 64, 1795–1823 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Zhou, Z.A., Yang, X.M.: Optimality conditions of generalized subconvexlike set-valued optimization problems based on the quasi-relative interior. J. Optim. Theory Appl. 150, 327–340 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hernández-Jiménez, B., Osuna-Gomez, R., Rojas-Medar, M.A.: Characterization of weakly efficient solutions for nonlinear multiobjective programming problems. Duality. J. Convex Anal. 21, 1007–1022 (2014)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Daniele, P., Giuffrè, S.: General infinite dimensional duality and applications to evolutionary networks equilibrium problems. Optim. Lett. 1, 227–243 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bot, R.I., Grad, S.M., Wanka, G.: Duality in Vector Optimization. Springer, Berlin (2009)CrossRefzbMATHGoogle Scholar
  17. 17.
    Bigi, G.: Saddlepoint optimality criteria in vector optimization. In: Guerraggio, A., et al. (eds.) Optimization in Economics, Finance and Industry (Verona), pp. 85–102. Datanova, Milan (2002)Google Scholar
  18. 18.
    Gutiérrez, C., Huerga, L., Novo, V.: Scalarization and saddle points of approximate proper solutions in nearly subconvexlike vector optimization problems. J. Math. Anal. Appl. 389, 1046–1058 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Mastroeni, G.: Optimality conditions and image space analysis for vector optimization problems. In: Ansari, Q.H., Yao, J.-C. (eds.) Recent Developments in Vector Optimization, pp. 169–220. Springer, Berlin (2012)CrossRefGoogle Scholar
  20. 20.
    Bot, R.I., Csetnek, E.R., Moldovan, A.: Revisiting some duality theorems via the quasirelative interior in convex optimization. J. Optim. Theory Appl. 139, 67–84 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Grad, A.: Quasi-relative interior-type constraint qualifications ensuring strong Lagrange duality for optimization problems with cone and affine constraints. J. Math. Anal. Appl. 361, 86–95 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Jahn, J.: Vector Optimization—Theory, Applications and extensions. Springer, Berlin (2004)CrossRefzbMATHGoogle Scholar
  23. 23.
    Luc, D.T.: Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer, New York (1989)CrossRefGoogle Scholar
  24. 24.
    Borwein, J.: Proper efficient points for maximizations with respect to cones. SIAM J. Control Optim. 15, 57–63 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Limber, M.A., Goodrich, R.K.: Quasi interiors, Lagrange multipliers, and \(L^p\) spectral estimation with lattice bounds. J. Optim. Theory Appl. 78, 143–161 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Guu, S.M., Li, J.: Vector quasi-equilibrium problems: separation, saddle points and error bounds for the solution set. J. Glob. Optim. 58, 751–767 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Gong, X.-H.: Optimality conditions for Henig and globally proper efficient solutions with ordering cone has empty interior. J. Math. Anal. Appl. 307, 12–31 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Brecker, W.W., Kassay, G.: A systematization of convexity concepts for sets and functions. J. Convex Anal. 4, 109–127 (1997)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Lehmann, R., Oettli, W.: The theorem of the alternative, the key-theorem, and the vector-maximum problem. Math. Program. 8, 332–344 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Grad, S.M.: Characterizations via linear scalarization of minimal and properly minimal elements. Optim. Lett. 12, 915–922 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Jameson, G.J.O.: Ordered Linear Spaces. Lecture Notes in Mathematics, vol. 141. Springer, Heidelberg (1970)CrossRefzbMATHGoogle Scholar
  32. 32.
    Klee, V.L.: Separation properties of convex cones. Proc. Am. Math. Soc. 6, 313–318 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Bao, T.Q., Mordukhovich, B.S.: Relative Pareto minimizers for multiobjective problems: existence and optimality conditions. Math. Program. Ser. A 122, 301–347 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Flores-Bazán, F., Hernández, E.: A unified vector optimization problem: complete scalarizations and applications. Optimization 60, 1399–1419 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Flores-Bazán, F., Hernández, E.: Optimality conditions for a unified vector optimization problem with not necessarily preordering relations. J. Glob. Optim. 56, 299–315 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Li, J., Mastroeni, G.: Image convexity of generalized systems with infinite-dimensional image and applications. J. Optim. Theory Appl. 69, 91–115 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Benson, H.P.: An improved definition of proper efficiency for vector maximization with respect to cones. J. Math. Anal. Appl. 71, 232–241 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Zeng, R., Caron, R.J.: Generalized Motzkin Gordan alternative theorems and vector optimization problems. J. Optim. Theory Appl. 131, 281–289 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Tardella, F.: On the image of a constrained extremum problem and some applications to the existence of a minimum. J. Optim. Theory Appl. 60, 93–104 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)CrossRefzbMATHGoogle Scholar
  41. 41.
    Dines, L.L.: On the mapping of quadratic forms. Bull. Am. Math. Soc. 47, 494–498 (1941)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Flores-Bazán, F., Opazo, F.: Characterizing the convexity of joint-range for a pair of inhomogeneous quadratic functions and strong duality. Minimax Theory Appl. 1, 257–290 (2016)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y MatemáticasUniversidad de ConcepciónConcepciónChile
  2. 2.Facultad de Ingeniería y ArquitecturaUniversidad Arturo Prat, Casilla 121IquiqueChile
  3. 3.Department of Computer ScienceUniversity of PisaPisaItaly

Personalised recommendations