Advertisement

Irreducible Infeasible Subsystems of Semidefinite Systems

  • Kai Kellner
  • Marc E. Pfetsch
  • Thorsten TheobaldEmail author
Article
  • 31 Downloads

Abstract

Farkas’ lemma for semidefinite programming characterizes semidefinite feasibility of linear matrix pencils in terms of an alternative spectrahedron. In the well-studied special case of linear programming, a theorem by Gleeson and Ryan states that the index sets of irreducible infeasible subsystems are exactly the supports of the vertices of the corresponding alternative polyhedron. We show that one direction of this theorem can be generalized to the nonlinear situation of extreme points of general spectrahedra. The reverse direction, however, is not true in general, which we show by means of counterexamples. On the positive side, an irreducible infeasible block subsystem is obtained whenever the extreme point has minimal block support. Motivated by results from sparse recovery, we provide a criterion for the uniqueness of solutions of semidefinite block systems.

Keywords

Semidefinite system Irreducible infeasible subsystem Alternative system Spectrahedron 

Mathematics Subject Classification

52A20 90C22 14P05 

Notes

Acknowledgements

We thank the anonymous referees for helpful suggestions.

References

  1. 1.
    Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)zbMATHGoogle Scholar
  2. 2.
    Gleeson, J., Ryan, J.: Identifying minimally infeasible subsystems of inequalities. ORSA J. Comput. 2(1), 61–63 (1990)CrossRefzbMATHGoogle Scholar
  3. 3.
    Chinneck, J.W.: Finding a useful subset of constraints for analysis in an infeasible linear program. INFORMS J. Comput. 9(2), 164–174 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chinneck, J.W., Dravnieks, E.W.: Locating minimal infeasible constraint sets in linear programs. ORSA J. Comput. 3(2), 157–168 (1991)CrossRefzbMATHGoogle Scholar
  5. 5.
    van Loon, J.N.M.: Irreducibly inconsistent systems of linear inequalities. Eur. J. Oper. Res. 8(3), 283–288 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chinneck, J.W.: Feasibility and Infeasibility in Optimization: Algorithms and Computational Methods, International Series in Operations Research and Management Sciences, vol. 118. Springer, Berlin (2008)zbMATHGoogle Scholar
  7. 7.
    Guieu, O., Chinneck, J.W.: Analyzing infeasible mixed-integer and integer linear programs. INFORMS J. Comput. 11(1), 63–77 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Codato, G., Fischetti, M.: Combinatorial Benders’ cuts. In: Bienstock, D., Nemhauser, G. (eds.) Proceedings of 10th International Conference on Integer Programming and Combinatorial Optimization (IPCO), New York, LNCS, vol. 3064, pp. 178–195. Springer, Berlin (2004)Google Scholar
  9. 9.
    Tunçel, L.: Polyhedral and Semidefinite Programming Methods in Combinatorial Optimization. Fields Institute Monographs. American Mathematical Society, Providence, RI (2010)Google Scholar
  10. 10.
    Gally, T., Pfetsch, M.E., Ulbrich, S.: A framework for solving mixed-integer semidefinite programs. Optim. Methods Softw. 33(3), 594–632 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Achterberg, T.: Conflict analysis in mixed integer programming. Discrete Optim. 4(1), 4–20 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Witzig, J., Berthold, T., Heinz, S.: Experiments with conflict analysis in mixed integer programming. In: Salvagnin, D., Lombardi, M. (eds) Integration of AI and OR Techniques in Constraint Programming, LNCS, vol. 10335, pp. 211–222. Springer, Berlin (2017)Google Scholar
  13. 13.
    Elhamifar, E., Vidal, R.: Block-sparse recovery via convex optimization. IEEE Trans. Signal Process. 60(8), 4094–4107 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Khajehnejad, M.A., Dimakis, A.G., Xu, W., Hassibi, B.: Sparse recovery of nonnegative signals with minimal expansion. IEEE Trans. Signal Process. 59(1), 196–208 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Wang, M., Tang, A.: Conditions for a unique non-negative solution to an underdetermined system. In: 47th Annual Allerton Conference on Communication, Control, and Computing, Monticello IL. IEEE (2009)Google Scholar
  16. 16.
    Wang, M., Xu, W., Tang, A.: A unique “nonnegative” solution to an underdetermined system: from vectors to matrices. IEEE Trans. Signal Process. 59(3), 1007–1016 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Klep, I., Schweighofer, S.: An exact duality theory for semidefinite programming based on sums of squares. Math. Oper. Res. 38(3), 569–590 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Blekherman, G., Parrilo, P.A., Thomas, R.R.: Semidefinite Optimization and Convex Algebraic Geometry. SIAM, Philadelphia (2013)zbMATHGoogle Scholar
  19. 19.
    Theobald, T.: Some recent developments in spectrahedral computation. In: Böckle, G., Decker, W., Malle, G. (eds) Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory, pp. 717–739. Springer, Berlin (2017)Google Scholar
  20. 20.
    Pfetsch, M.E.: The maximum feasible subsystem problem and vertex-facet incidences of polyhedra. Ph.D. thesis, TU Berlin (2003)Google Scholar
  21. 21.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1997)zbMATHGoogle Scholar
  22. 22.
    Amaldi, E., Pfetsch, M.E., Trotter Jr., L.E.: On the maximum feasible subsystem problem, IISs, and IIS-hypergraphs. Math. Program. 95(3), 533–554 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Eldar, Y.C., Kuppinger, P., Bölcskei, H.: Block-sparse signals: uncertainty relations and efficient recovery. IEEE Trans. Signal Process. 58(6), 3042–3054 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lin, J.H., Li, S.: Block sparse recovery via mixed \(l_2\)/\(l_1\) minimization. Acta Math. Sin. Engl. Ser. 29(7), 1401–1412 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Liu, M., Pataki, G.: Exact duality in semidefinite programming based on elementary reformulations. SIAM J. Optim. 25(3), 1441–1454 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Frankfurt am MainGermany
  2. 2.Department of MathematicsTU DarmstadtDarmstadtGermany
  3. 3.FB 12 – Institut für MathematikGoethe-UniversitätFrankfurt am MainGermany

Personalised recommendations