Advertisement

On the R0-Tensors and the Solution Map of Tensor Complementarity Problems

  • Vu Trung HieuEmail author
Article

Abstract

Our purpose is to investigate several properties of the solution map of tensor complementarity problems. To do this, we focus on the R0-tensors and show some results on the local boundedness and the upper semicontinuity. Furthermore, by using a technique from semi-algebraic geometry, we obtain results on the finite-valuedness, the lower semicontinuity, and the local upper-Hölder stability of the map.

Keywords

Tensor complementarity problem R0-tensor Semi-algebraic set Solution map Finite-valuedness Local boundedness Upper semicontinuity Lower semicontinuity Local upper-Hölder stability 

Mathematics Subject Classification

90C33 90C31 14P10 54C60 

Notes

Acknowledgements

The author would like to thank Professor Nguyen Dong Yen for encouragement. The author is grateful to the anonymous referees for their careful readings and valuable suggestions.

References

  1. 1.
    Song, Y., Qi, L.: Properties of tensor complementarity problem and some classes of structured tensors. Ann. Appl. Math. 33, 308–323 (2017)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Song, Y., Qi, L.: Properties of some classes of structured tensors. J. Optim. Theory Appl. 165, 854–873 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Huang, Z.H., Qi, L.: Formulating an \(n\)-person noncooperative game as a tensor complementarity problem. Comput. Optim. Appl. 66, 557–576 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bai, X.L., Huang, Z.H., Wang, Y.: Global uniqueness and solvability for tensor complementarity problems. J. Optim. Theory Appl. 170, 72–84 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bai, X.L., Huang, Z.H., Wang, Y.: Exceptionally regular tensors and tensor complementarity problems. Optim. Methods Softw. 31, 815–828 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Balaji, R., Palpandi, K.: Positive definite and Gram tensor complementarity problems. Optim. Lett. 12, 639–648 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chen, H., Qi, L., Song, Y.: Column sufficient tensors and tensor complementarity problems. Front. Math. China 13, 255–276 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Du, S., Zhang, L.: A mixed integer programming approach to the tensor complementarity problem. arxiv:1804.00406 (2018)
  9. 9.
    Liu, D., Li, W., Vong, S.-W.: Tensor complementarity problems: the GUS-property and an algorithm. Linear Multilinear A 66, 1726–1749 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ling, L., He, H., Ling, C.: On error bounds of polynomial complementarity problems with structured tensors. Optimization 67, 1–18 (2017)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Luo, Z., Qi, L., Xiu, N.: The sparsest solutions to Z-tensor complementarity problems. Optim. Lett. 11, 471–482 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Qi, L., Chen, H., Chen, Y.: Tensor Eigenvalues and Their Applications. Springer, Singapore (2018)CrossRefzbMATHGoogle Scholar
  13. 13.
    Song, Y., Qi, L.: Necessary and sufficient conditions for copositive tensors. Linear Multilinear A 63, 120–131 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Song, Y., Qi, L.: Tensor complementarity problem and semi-positive tensors. J. Optim. Theory Appl. 169, 1069–1078 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Song, Y., Qi, L.: Strictly semi-positive tensors and the boundedness of tensor complementarity problems. Optim. Lett. 11, 1407–1426 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Song, Y., Yu, G.: Properties of solution set of tensor complementarity problem. J. Optim. Theory Appl. 170, 85–96 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Song, Y., Mei, W.: Structural properties of tensors and complementarity problems. J. Optim. Theory Appl. 177, 289–305 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Xie, S.L., Li, D.H., Xu, H.R.: An iterative method for finding the least solution to the tensor complementarity problem. J. Optim. Theory Appl. 175, 119–136 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zhao, X., Fan, J.: A semidefinite method for tensor complementarity problems. Optim. Methods Softw.  https://doi.org/10.1080/10556788.2018.1439489 (2018)
  20. 20.
    Zheng, Y.N., Wu, W.: On a class of semi-positive tensors in tensor complementarity problem. J. Optim. Theory Appl. 177, 127–136 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Oettli, W., Yen, N.D.: In: Giannessi, F., Maugeri, A. (eds.) Continuity of the solution set of homogeneous equilibrium problems and linear complementarity problems. In: Variational Inequalities and Network Equilibrium Problem. Plenum Press, New York (1995)Google Scholar
  22. 22.
    Gowda, M.S.: Polynomial complementarity problems. Pac. J. Optim. 13, 227–241 (2017)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic, Boston (1992)zbMATHGoogle Scholar
  24. 24.
    Gowda, M.S.: On the continuity of the solution map in linear complementarity problems. SIAM J. Optim. 2, 619–634 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Phung, H.T.: On continuity properties of the solution map in linear complementarity problems. Vietnam J. Math. 30, 257–258 (2002)MathSciNetGoogle Scholar
  26. 26.
    Robinson, S.M.: Generalized: equations and their solutions. Part I: basic theory. Math. Program. Stud. 10, 128–141 (1979)CrossRefzbMATHGoogle Scholar
  27. 27.
    Bernstein, D.S.: Matrix Mathematics: Theory, Facts, and Formulas. Princeton University Press, Princeton (2009)CrossRefzbMATHGoogle Scholar
  28. 28.
    Bochnak, R., Coste, M., Roy, M.F.: Real Algebraic Geometry. Springer, Berlin (1998)CrossRefzbMATHGoogle Scholar
  29. 29.
    Dang, V.D., Ha, H.V., Pham, T.S.: Well-posedness in unconstrained polynomial optimization problems. SIAM J. Optim. 26, 1411–1428 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Coste, M.: An Introduction to Semialgebraic Geometry. Université de Rennes, Institut de Recherche Mathématique de Rennes (2002)Google Scholar
  31. 31.
    Rudin, W.: Functional Analysis. McGraw-Hill, New York City (1991)zbMATHGoogle Scholar
  32. 32.
    Tu, Loring W.: An Introduction to Manifolds, 2nd edn. Springer, Berlin (2010)Google Scholar
  33. 33.
    Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I. Springer, New York (2003)zbMATHGoogle Scholar
  34. 34.
    Lee, G.M., Tam, N.N., Yen, N.D.: Quadratic Programming and Affine Variational Inequalities: A Qualitative Study. Springer, New York (2005)zbMATHGoogle Scholar
  35. 35.
    Lee, J.H., Lee, G.M., Pham, T.S.: Genericity and Holder stability in semi-algebraic variational inequalities. J. Optim. Theory Appl. 178, 56–77 (2018)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of MathematicsPhuong Dong UniversityHanoiVietnam

Personalised recommendations