Advertisement

On Preservation of Common Fixed Points and Coincidences Under a Homotopy of Mapping Families of Ordered Sets

  • Tatiana Fomenko
  • Dmitrii PodoprikhinEmail author
Article
  • 37 Downloads

Abstract

In the case of Banach spaces, there are theorems stating the invariance of the fixed point property of mappings under a homotopy. In this paper, we consider this problem in the case of ordered sets. As the main results, we present theorems on the preservation of the property of a family of mappings to have a common fixed point by an order homotopy.

Keywords

Fixed point Coincidence point Partial order Isotone mapping Order homotopy 

Mathematics Subject Classification

54H25 06A06 

References

  1. 1.
    Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 5(2), 285–309 (1955)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Zermelo, E.: Beweis, das jede Menge wohlgeordnet werden kann. Math. Ann. 59, 514–516 (1904)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Zermelo, E.: Neuer Beweis fiir die Miiglichkeit einer Wohlordnung. Math. Ann. 65, 107–128 (1908)zbMATHGoogle Scholar
  4. 4.
    Kirk, W.A., Sims, B. (eds.): Handbook of Metric Fixed Point Theory. Springer, Berlin (2001)zbMATHGoogle Scholar
  5. 5.
    Smithson, R.E.: Fixed points of order preserving multifunctions. Proc. Am. Math. Soc. 28(1), 304–310 (1971)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Demarr, R.: Common fixed points for isotone mappings. Colloq. Math. 13(1), 45–48 (1964)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Arutyunov, A.V.: Covering mappings in metric spaces and fixed points. Dokl. Math. 76(2), 665–668 (2007)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Arutyunov, A., Avakov, E., Gel’man, B., Dmitruk, A., Obukhovskii, V.: Locally covering maps in metric spaces and coincidence points. J. Fixed Point Theory Appl. 5(1), 105–127 (2009)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Arutyunov, A.V.: Stability of coincidence points and properties of covering mappings. Math. Notes 86(2), 153–158 (2009)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Fomenko, T.N.: Cascade search of the coincidence set of collections of multivalued mappings. Math. Notes 86(2), 276–281 (2009)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Fomenko, T.N.: Approximation of coincidence points and common fixed points of a collection of mappings of metric spaces. Math. Notes 86(1), 107–120 (2009)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Fomenko, T.N.: Stability of cascade search. Izv. Math. 74(5), 1051–1068 (2010)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Fomenko, T.N.: Cascade search: stability of reachable limit points. Mosc. Univ. Math. Bull. 65(5), 179–185 (2010)zbMATHGoogle Scholar
  14. 14.
    Fomenko, T.N.: Cascade search principle and its applications to the coincidence problem of n one-valued or multi-valued mappings. Topol. Appl. 157, 760–773 (2010)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Fomenko, T.N.: Functionals strictly subjected to convergent series and search for singularities of mappings. J. Fixed Point Theory Appl. 14(1), 21–40 (2013)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Fomenko, T.N.: Functionals strictly subordinate to series and search for solutions of equations. Dokl. Math. 88(3), 748–750 (2013)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Fomenko, T.N.: Cascade search for preimages and coincidences: global and local versions. Math. Notes 93(1), 127–143 (2013)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Gajnullova, S.R., Fomenko, T.N.: Functionals subordinate to converging series and some applications. Math. Notes 96(2), 294–297 (2014)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Fomenko, T.N.: Approximation theorems in metric spaces and functionals strictly subordinated to convergent series. Topol. Appl. 179, 81–90 (2015)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Fomenko, T.N.: Browder function and theorems on fixed points and coincidences. Izv. Math. 79(5), 1087–1095 (2015)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Arutyunov, A.V., Zhukovskiy, E.S., Zhukovskiy, S.E.: Coincidence points principle for set-valued mappings in partially ordered spaces. Topol. Appl. 201, 330–343 (2016)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Arutyunov, A.V., Zhukovskiy, E.S., Zhukovskiy, S.E.: Coincidence points principle for mappings in partially ordered spaces. Topol. Appl. 179, 13–33 (2015)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Arutyunov, A.V., Zhukovskiy, E.S., Zhukovskiy, S.E.: On coincidence points of mappings in partially ordered spaces. Dokl. Math. 88(3), 710–713 (2013)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Arutyunov, A.V., Zhukovskiy, E.S., Zhukovskiy, S.E.: Coincidence points of set-valued mappings in partially ordered spaces. Dokl. Math. 88(3), 727–729 (2013)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Avakov, E.R., Arutyunov, A.V., Zhukovskii, E.S.: Covering mappings and their applications to differential equations unsolved for the derivative. Differ. Equ. 45(5), 627–649 (2009)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Arutyunov, A.V., Zhukovskiy, E.S., Zhukovskiy, S.E.: Covering mappings and well-posedness of nonlinear Volterra equations. Nonlinear Anal. 75(3), 1026–1044 (2012)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Zhukovskiy, E.S.: On ordered-covering mappings and implicit differential inequalities. Differ. Equ. 52(12), 1539–1556 (2016)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Arutyunov, A.V., Zhukovskiy, S.E., Pavlova, N.G.: Equilibrium price as a coincidence point of two mappings. Comput. Math. Math. Phys. 53(2), 158–169 (2013)MathSciNetGoogle Scholar
  29. 29.
    Fomenko, T.N., Podoprikhin, D.A.: On coincidences of families of mappings on ordered sets. Dokl. Math. 94(3), 620–622 (2016)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Fomenko, T.N., Podoprikhin, D.A.: Common fixed points and coincidences of mapping families on partially ordered sets. Topol. Appl. 221, 275–285 (2017)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Walker, J.W.: Isotone relations and the fixed point property for posets. Discrete Math. 48(2–3), 275–288 (1984)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Podoprikhin, D.A.: Fixed points of mappings on ordered sets. Lobachevskii J. Math. 38(6), 1069–1074 (2017)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Podoprikhin, D.A., Fomenko, T.N.: Preservation of the existence of fixed and coincidence points under homotopy of mappings of ordered sets. Dokl. Math. 96(3), 591–593 (2017)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Frigon, M.: On Continuation methods for contractive and nonexpansive mappings. In: Benavides, T.D. (ed.) Recent Advances on Metric Fixed Point Theory, pp. 19–29. Sevilla, University of Seville (1996)Google Scholar
  35. 35.
    Stong, R.E.: Finite topological spaces. Trans. Am. Math. Soc. 123(2), 325–340 (1966)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Brøndsted, A.: On a lemma of Bishop and Phelps. Pac. J. Math. 55(2), 335–341 (1974)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Fomenko, T.N.: Preservation of the existence of coincidence points under some discrete transformations of a pair of mappings of metric spaces. Trudy Instituta Matematiki i Mekhaniki UrO RAN 23(4), 292–300 (2017)MathSciNetGoogle Scholar
  38. 38.
    Fomenko, T.N.: Brondsted’s order in metric space and generalizations of Caristi’s theorem. Bull. Mosc. State Univ. 72(5), 199–202 (2017)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations