Variational Analysis Down Under Open Problem Session

  • Hoa T. Bui
  • Scott B. Lindstrom
  • Vera RoshchinaEmail author


We state the problems discussed in the open problem session at Variational Analysis Down Under conference held in honour of Prof. Asen Dontchev on 19–21 February 2018 at Federation University Australia.


Calm selections Polytopes Decomposability Projections Douglas–Rachford Minimal distance Demyanov–Ryabova conjecture Dürer’s conjecture 

Mathematics Subject Classification

49J53 49K99 52Bxx 



We are grateful to Asen Dontchev, Andrew Eberhard, Alex Kruger and David Yost for patiently clarifying the mathematical details of their open problems to us.


  1. 1.
    Dontchev, A.L., Rockafellar, T.R.: Implicit Functions and Solution mappings. A View From Variational Analysis. Springer, Berlin (2014)zbMATHGoogle Scholar
  2. 2.
    Dontchev, A.L.: A local selection theorem for metrically regular mappings. J. Convex Anal. 11(1), 81–94 (2004)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Pourciau, B.H.: Analysis and optimization of Lipschitz continuous mappings. J. Opt. Theory Appl. 22, 311–351 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cibulka, R., Dontchev, A.L., Veliov, V.M.: Lyusternik–Graves theorems for the sum of a Lipschitz function and a set-valued mapping. SIAM J. Control Optim. 54(6), 3273–3296 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gallivan, S.: Disjoint edge paths between given vertices of a convex polytope. J. Combin. Theory Ser. A 39, 112–115 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Thomassen, C.: 2-linked graphs. Eur. J. Comb. 1, 371–378 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Seymour, P.D.: Disjoint paths in graphs. Discrete Math. 29, 293–309 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Przesławski, K., Yost, D.: More indecomposable polyhedra. Extr. Math. 31(2), 169–188 (2016)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Briggs, D.: Comprehensive catalogue of polyhedra. AMSI Report (2016)Google Scholar
  10. 10.
    Fabian, M., Habala, P., Hájek, P., Montesinos Santalucía, V., Pelant, J., Zizler, V.: Functional Analysis and Infinite-Dimensional Geometry. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 8. Springer, New York (2001).
  11. 11.
    Lindenstrauss, J.: On operators which attain their norms. Isr. J. Math. 3, 139–148 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Troyanski, S.: On locally uniformly convex and differentiable norms in certain nonseparable banach spaces with an unconditional basic. Stud. Math. 37, 173–180 (1971)CrossRefzbMATHGoogle Scholar
  13. 13.
    Klee, V.: Convexity of Chebyshev sets. Math. Ann. 142, 291–304 (1961)CrossRefzbMATHGoogle Scholar
  14. 14.
    Borwein, J.M.: Proximality and Chebyshev sets. Optim. Lett. 1, 21–32 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Asplund, E.: Cebysev sets in Hilbert space. Trans. Am. Math. Soc. 114, 235–240 (1969)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Lions, P., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Bauschke, H., Combettes, P., Luke, R.: Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization. J. Opt. Soc. Am. A 19, 1334–1345 (2002)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Borwein, J.M., Sims, B.: The Douglas–Rachford algorithm in the absence of convexity. In: Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz, H. (eds.) Fixed Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and Its Applications, vol. 49. Springer, Berlin (2011)Google Scholar
  19. 19.
    Benoist, J.: The Douglas–Rachford algorithm for the case of the sphere and line. J. Global Optim. 63, 363–380 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Dao, M.N., Tam, M.K.: A Lyapunov-type approach to convergence of the Douglas–Rachford algorithm for a nonconvex setting. J. Global Optim. (2018).
  21. 21.
    Borwein, J.M., Lindstrom, S.B., Sims, B., Skerritt, M., Schneider, A.: Dynamics of the Douglas–Rachford method for ellipses and p-spheres. Set Valued Var. Anal. 26, 385–403 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Nickel, S., Puerto, J.: Location Theory: A Unified Approach. Springer, Berlin (2005)zbMATHGoogle Scholar
  23. 23.
    Demyanov, V.F., Ryabova, J.A.: Exhausters, coexhausters and converters in nonsmooth analysis. Discrete Contin. Dyn. Syst. 31(4), 1273–1292 (2011). MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Daniilidis, A., Petitjean, C.: A partial answer to the Demyanov–Ryabova conjecture. Set Valued Var. Anal. (2017).
  25. 25.
    Sang, T.: On the conjecture by Demyanov–Ryabova in converting finite exhausters. J. Optim. Theory Appl. 174(3), 712–727 (2017). MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Roshchina, V.: Demyanov–Ryabova conjecture is false. Optim. Lett. (2018).
  27. 27.
    Dürer, A.: Underweysung der Messung, mit dem Zirckel und Richtscheyt, in Linien, Ebenen unnd gantzen corporen. Nuremberg (1525)Google Scholar
  28. 28.
    Shephard, G.C.: Convex polytopes with convex nets. Math. Proc. Camb. Philos. Soc. 78(3), 389–403 (1975). MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Ghomi, M.: Dürer’s unfolding problem for convex polyhedra. Not. Am. Math. Soc. 65(1), 25–27 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Ghomi, M.: Affine unfoldings of convex polyhedra. Geom. Topol. 18(5), 3055–3090 (2014). MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center of Informatics and Applied Optimisation (CIAO)Federation UniversityBallaratAustralia
  2. 2.CARMAUniversity of NewcastleCallaghanAustralia
  3. 3.School of Mathematics and StatisticsUNSWSydneyAustralia

Personalised recommendations