Advertisement

Journal of Optimization Theory and Applications

, Volume 180, Issue 1, pp 235–255 | Cite as

On a Few Questions Regarding the Study of State-Constrained Problems in Optimal Control

  • Dmitry KaramzinEmail author
  • Fernando Lobo Pereira
Article

Abstract

The article is focused on the investigation of the necessary optimality conditions in the form of Pontryagin’s maximum principle for optimal control problems with state constraints. A number of results on this topic, which refine the existing ones, are presented. These results concern the nondegenerate maximum principle under weakened controllability assumptions and also the continuity of the measure Lagrange multiplier.

Keywords

Optimal control Maximum principle State constraints 

Mathematics Subject Classification

49N25 

Notes

Acknowledgements

We kindly thank professor A.V. Arutyunov for useful comments and fruitful discussions. The support from the Russian Foundation for Basic Research during the projects 16-31-60005, 18-29-03061, and the support of FCT R&D Unit SYSTEC—POCI-01-0145-FEDER-006933/SYSTEC funded by ERDF | COMPETE2020 | FCT/MEC | PT2020 extension to 2018, Project STRIDE NORTE-01-0145-FEDER-000033 funded by ERDF | NORTE2020, and FCT Project POCI-01-01-0145-FEDER-032485 funded by ERDF | COMPETE2020 | POCI are also acknowledged.

References

  1. 1.
    Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Interscience, New York (1962)zbMATHGoogle Scholar
  2. 2.
    Gamkrelidze, R.V.: Optimum-rate processes with bounded phase coordinates. Dokl. Akad. Nauk SSSR 125, 475–478 (1959)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Warga, J.: Minimizing variational curves restricted to a preassigned set. Trans. Am. Math. Soc. 112, 432–455 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dubovitskii, A.Y., Milyutin, A.A.: Extremum problems in the presence of restrictions. Zh. Vychisl. Mat. Mat. Fiz. 5(3), 395–453 (1965); U.S.S.R. Comput. Math. Math. Phys. 5(3), 1–80 (1965)Google Scholar
  5. 5.
    Neustadt, L.W.: An abstract variational theory with applications to a broad class of optimization problems. II: Applications. SIAM J. Control 5, 90–137 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Arutyunov, A.V., Tynyanskiy, N.T.: The maximum principle in a problem with phase constraints. Sov. J. Comput. Syst. Sci. 23, 28–35 (1985)MathSciNetGoogle Scholar
  7. 7.
    Arutyunov, A.V.: On necessary optimality conditions in a problem with phase constraints. Sov. Math. Dokl. 31, 1 (1985)zbMATHGoogle Scholar
  8. 8.
    Dubovitskii, A.Y., Dubovitskii, V.A.: Necessary conditions for strong minimum in optimal control problems with degeneration of endpoint and phase constraints. Usp. Mat. Nauk 40, 2 (1985)Google Scholar
  9. 9.
    Arutyunov, A.V.: Perturbations of extremal problems with constraints and necessary optimality conditions. J. Sov. Math. 54, 6 (1991)CrossRefzbMATHGoogle Scholar
  10. 10.
    Arutyunov, A.V., Blagodatskikh, V.I.: Maximum-principle for differential inclusions with space constraints, Number theory, algebra, analysis and their applications. Collection of articles. Dedicated to the centenary of Ivan Matveevich Vinogradov, Trudy Mat. Inst. Steklov., vol. 200, Nauka, Moscow (1991); Proc. Steklov Inst. Math., 200 (1993)Google Scholar
  11. 11.
    Arutyunov, A.V., Aseev, S.M., Blagodatskikh, V.I.: First-order necessary conditions in the problem of optimal control of a differential inclusion with phase constraints. Math. Sb. 184, 6 (1993)zbMATHGoogle Scholar
  12. 12.
    Vinter, R.B., Ferreira, M.M.A.: When is the maximum principle for state constrained problems nondegenerate? J. Math. Anal. Appl. 187, 438–467 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Arutyunov, A.V., Aseev, S.M.: State constraints in optimal control. The degeneracy phenomenon. Syst. Control Lett. 26, 267–273 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Arutyunov, A.V., Aseev, S.M.: Investigation of the degeneracy phenomenon of the maximum principle for optimal control problems with state constraints. SIAM J. Control Optim. 35, 3 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ferreira, M.M.A., Fontes, F.A.C.C., Vinter, R.B.: Non-degenerate necessary conditions for nonconvex optimal control problems with state constraints. J. Math. Anal. Appl. 233, 116–129 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hager, W.W.: Lipschitz continuity for constrained processes. SIAM J. Control Optim. 17, 321–338 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Maurer, H.: Differential stability in optimal control problems. Appl. Math. Optim. 5(1), 283–295 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Afanas’ev, A.P., Dikusar, V.V., Milyutin, A.A., Chukanov, S.A.: Necessary condition in optimal control. Nauka, Moscow (1990). [in Russian] Google Scholar
  19. 19.
    Galbraith, G.N., Vinter, R.B.: Lipschitz continuity of optimal controls for state constrained problems. SIAM J. Control Optim. 42, 5 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Arutyunov, A.V.: Properties of the Lagrange multipliers in the Pontryagin maximum principle for optimal control problems with state constraints. Differ. Equ. 48, 12 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Arutyunov, A.V., Karamzin, D.Y.: On some continuity properties of the measure Lagrange multiplier from the maximum principle for state constrained problems. SIAM J. Control Optim. 53, 4 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Halkin, H.: A satisfactory treatment of equality and operator constraints in the Dubovitskii–Milyutin optimization formalism. J. Optim. Theory Appl. 6, 2 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ioffe, A.D., Tikhomirov, V.M.: Theory of Extremal Problems. North-Holland, Amsterdam (1979)Google Scholar
  24. 24.
    Arutyunov, A.V.: Optimality Conditions: Abnormal and Degenerate Problems Mathematics and Its Application. Kluwer Academic Publisher, Dordrecht (2000)Google Scholar
  25. 25.
    Vinter, R.B.: Optimal Control. Birkhauser, Boston (2000)zbMATHGoogle Scholar
  26. 26.
    Milyutin, A.A.: Maximum Principle in a General Optimal Control Problem. Fizmatlit, Moscow (2001). [in Russian]Google Scholar
  27. 27.
    Arutyunov, A.V., Karamzin, D.Y., Pereira, F.L.: The maximum principle for optimal control problems with state constraints by R.V. Gamkrelidze: revisited. J. Optim. Theory Appl. 149, 474–493 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Vinter, R.B., Papas, G.: A maximum principle for nonsmooth optimal control problems with state constraints. J. Math. Anal. Appl. 89, 212–232 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983)zbMATHGoogle Scholar
  30. 30.
    Ioffe, A.D.: Necessary conditions in nonsmooth optimization. Math. Oper. Res. 9, 159–189 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Colombo, G., Henrion, R., Hoang, N.D., Mordukhovich, B.S.: Discrete approximations of a controlled sweeping process. Set-Valued Var. Anal. 23(1), 69–86 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Colombo, G., Henrion, R., Nguyen, D.H., Mordukhovich, B.S.: Optimal control of the sweeping process over polyhedral controlled sets. J. Differ. Equ. 260, 4 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Cao, T.H., Mordukhovich, B.S.: Optimality conditions for a controlled sweeping process with applications to the crowd motion model. Discret. Contin. Dyn. Syst. Ser. B 22, 2 (2017)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Bryson, E.R., Yu-Chi, Ho: Applied Optimal Control. Taylor & Francis, London (1969)Google Scholar
  35. 35.
    Betts, J.T., Huffman, W.P.: Path-constrained trajectory optimization using sparse sequential quadratic programming. J. Guid. Control Dyn. 16(1), 59–68 (1993)CrossRefzbMATHGoogle Scholar
  36. 36.
    Buskens, C., Maurer, H.: SQP-methods for solving optimal control problems with control and state constraints: adjoint variables, sensitivity analysis and real-time control. J. Comput. Appl. Math. 120, 85–108 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Haberkorn, T., Trelat, E.: Convergence results for smooth regularizations of hybrid nonlinear optimal control problems. SIAM J. Control Optim. 49, 1498–1522 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Dang, T.P., Diveev, A.I., Sofronova, E.A.: A Problem of Identification Control Synthesis for Mobile Robot by the Network Operator Method. Proceedings of the 11th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 2413–2418 (2016)Google Scholar
  39. 39.
    Zeiaee, A., Soltani-Zarrin, R., Fontes, F.A.C.C., Langari, R.: Constrained directions method for stabilization of mobile robots with input and state constraints. Proceedings of the American Control Conference, pp. 3706–3711 (2017)Google Scholar
  40. 40.
    Mordukhovich, B.S.: Maximum principle in the problem of time optimal response with nonsmooth constraints. J. Appl. Math. Mech. 40(6), 960–969 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. Volume II. Applications. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (2006)CrossRefGoogle Scholar
  42. 42.
    Arutyunov, A.V., Vinter, R.B.: A simple ’finite approximations’ proof of the Pontryagin maximum principle under reduced differentiability hypotheses. Set-Valued Anal. 12(1–2), 5–24 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Arutyunov, A.V., Karamzin, D.Y., Pereira, F.L.: Investigation of controllability and regularity conditions for state constrained problems. IFAC-PapersOnLine 50(1), 6295–6302 (2017)CrossRefGoogle Scholar
  44. 44.
    Arutyunov, A.V., Karamzin, D.Y.: Properties of extremals in optimal control problems with state constraints. Differ. Equ. 52, 11 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Federal Research Center “Computer Science and Control” of the Russian Academy of SciencesMoscowRussia
  2. 2.University of PortoPortoPortugal

Personalised recommendations