New Farkas-Type Results for Vector-Valued Functions: A Non-abstract Approach

  • Nguyen Dinh
  • Miguel A. Goberna
  • Dang H. Long
  • Marco A. López-CerdáEmail author


This paper provides new Farkas-type results characterizing the inclusion of a given set, called contained set, into a second given set, called container set, both of them are subsets of some locally convex space, called decision space. The contained and the container sets are described here by means of vector functions from the decision space to other two locally convex spaces which are equipped with the partial ordering associated with given convex cones. These new Farkas lemmas are obtained via the complete characterization of the conic epigraphs of certain conjugate mappings which constitute the core of our approach. In contrast with a previous paper of three of the authors (Dinh et al. in J Optim Theory Appl 173:357–390, 2017), the aimed characterizations of the containment are expressed here in terms of the data.


Farkas-type results Vector-valued functions Qualification conditions 

Mathematics Subject Classification

90C48 90C46 90C29 



The authors wish to thank an anonymous referee for his/her valuable comments which helped to improve the manuscript. This research was supported by the National Foundation for Science & Technology Development (NAFOSTED) of Vietnam, Project 101.01-2015.27, Generalizations of Farkas lemma with applications to optimization, by the Ministry of Economy and Competitiveness of Spain and the European Regional Development Fund (ERDF) of the European Commission, Project MTM2014-59179-C2-1-P, and by the Australian Research Council, Project DP160100854.


  1. 1.
    Boţ, R.I., Wanka, G.: Farkas-type results with conjugate functions. SIAM J. Optim. 15, 540–554 (2004)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Dinh, N., Jeyakumar, V.: Farkas’ lemma: three decades of generalizations for mathematical optimization. TOP 22, 1–22 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Fang, D.H., Li, C., Ng, K.F.: Constraint qualifications for extended Farkas’s lemmas and Lagrangian dualities in convex infinite programming. SIAM J. Optim. 20, 1311–1332 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Li, G., Zhou, Y.-Y.: The stable Farkas lemma for composite convex functions in infinite dimensional spaces. Acta Math. Appl. Sin. Engl. Ser. 31, 677–692 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Momenaei Kermani, V., Doagooei, A.R.: Vector topical functions and Farkas type theorems with applications. Optim. Lett. 9, 359–374 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Phat, V.N., Park, J.Y.: Further generalizations of Farkas’ theorem and their applications in optimal control. J. Math. Anal. Appl. 216, 23–39 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bartl, D.: A very short algebraic proof of the Farkas Lemma. Math. Meth. Oper. Res. 75, 101–104 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dinh, N., Goberna, M.A., López, M.A., Mo, T.H.: Farkas-type results for vector-valued functions with applications. J. Optim. Theory Appl. 173, 357–390 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Boţ, R.I., Grad, S.-M., Wanka, G.: Duality in Vector Optimization. Springer, Berlin (2009)zbMATHGoogle Scholar
  10. 10.
    Khan, A., Tammer, Ch., Zalinescu, C.: Set-Valued Optimization: An Introduction with Applications. Springer, Heidelberg (2015)CrossRefzbMATHGoogle Scholar
  11. 11.
    Bao, T., Mordukhovich, B.S.: Necessary conditions for super minimizers in constrained multiobjective optimization. J. Global Optim. 43, 533–552 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Heyde, F., Löhne, A.: Solution concepts in vector optimization: a fresh look at on old story. Optimization 60, 1421–1440 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Löhne, A.: Vector Optimization with Infimum and Supremum. Springer, Heidelberg (2011)CrossRefzbMATHGoogle Scholar
  14. 14.
    Boţ, R.I.: Conjugate Duality in Convex Optimization. Springer, Berlin (2010)zbMATHGoogle Scholar
  15. 15.
    Dinh, N., Goberna, M.A., López, M.A., Mo, T.H.: From the Farkas lemma to the Hahn–Banach theorem. SIAM J. Optim. 24, 678–701 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dinh, N., Vallet, G.V., Volle, M.: Functional inequalities and theorems of the alternative involving composite functions. J. Global Optim. 59, 837–863 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Grad, S.-M.: Vector Optimization and Monotone Operators Via Convex Duality. Springer, Cham (2015)CrossRefzbMATHGoogle Scholar
  18. 18.
    Tanino, T.: On supremum of a set in a multi-dimensional space. J. Math. Anal. Appl. 130, 386–397 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Tanino, T.: Conjugate duality in vector optimization. J. Math. Anal. Appl. 167, 84–97 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Aliprantis, ChD, Burkinshaw, O.: Positive Operators. Academic Press, Orlando (1985)zbMATHGoogle Scholar
  21. 21.
    Krasnosel’skij, M.A., Lifshits, J.A., Sobolev, A.V.: Positive Linear Systems. The Method of Positive Operators. Translated from the Russian by J. Appell. Sigma Series in Applied Mathematics, 5. Heldermann, Berlin (1989)Google Scholar
  22. 22.
    Rudin, W.: Functional Analysis, 2nd edn. McGraw-Hill, New York (1991)zbMATHGoogle Scholar
  23. 23.
    Dinh, N., Goberna, M.A., López, M.A.: From linear to convex systems: consistency, Farkas lemma and applications. J. Convex Anal. 13, 279–290 (2006)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Dinh, N., Lopez, M.A., Volle, M.: Functional inequalities in the absence of convexity and lower semi-continuity with applications to optimization. SIAM J. Optim. 20, 2540–2559 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Flores-Bazán, F., Flores-Bazán, F., Laengle, S.: Characterizing efficiency on infinite-dimensional commodity spaces with ordering cones having possibly empty interiors. J. Optim. Theory Appl. 164, 455–478 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Grad, S.-M., Pop, E.-L.: Vector duality for convex vector optimization problems by means of the quasi-interior of the ordering cone. Optimization 63, 21–37 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Debreu, G.: Theory of Value: An Axiomatic Analysis of Economic Equilibrium. Wiley, New York (1959)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.International University, Vietnam National University-HCMHo Chi Minh CityVietnam
  2. 2.Department of MathematicsUniversity of AlicanteAlicanteSpain
  3. 3.VNUHCM-University of ScienceHo Chi Minh CityVietnam
  4. 4.Tien Giang UniversityTien Giang TownVietnam
  5. 5.CIAOFederation UniversityBallaratAustralia

Personalised recommendations