Journal of Optimization Theory and Applications

, Volume 178, Issue 3, pp 998–1013 | Cite as

A Characterization of Nash Equilibrium for the Games with Random Payoffs

  • Vikas Vikram Singh
  • Abdel Lisser


We consider a two-player random bimatrix game where each player is interested in the payoffs which can be obtained with certain confidence. The payoff function of each player is defined using a chance constraint. We consider the case where the entries of the random payoff matrix of each player jointly follow a multivariate elliptically symmetric distribution. We show an equivalence between the Nash equilibrium problem and the global maximization of a certain mathematical program. The case where the entries of the payoff matrices are independent normal/Cauchy random variables is also considered. The case of independent normally distributed random payoffs can be viewed as a special case of a multivariate elliptically symmetric distributed random payoffs. As for Cauchy distribution, we show that the Nash equilibrium problem is equivalent to the global maximization of a certain quadratic program. Our theoretical results are illustrated by considering randomly generated instances of the game.


Chance-constrained games Nash equilibrium Elliptically symmetric distribution Cauchy distribution Mathematical program Quadratic program 

Mathematics Subject Classification

91A10 90C15 90C20 90C26 


  1. 1.
    von Neumann, J.: On the theory of games. Math. Ann. 100, 295–320 (1928)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Nash, J.F.: Equilibrium points in n-person games. Proc. Nat. Acad. Sci. 36, 48–49 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Mangasarian, O.L., Stone, H.: Two-person nonzero-sum games and quadratic programming. J. Math. Anal. Appl. 9, 348–355 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Collins, W.D., Hu, C.: Studying interval valued matrix games with fuzzy logic. Soft. Comput. 12, 147–155 (2008)CrossRefzbMATHGoogle Scholar
  5. 5.
    Li, D.-F., Nan, J.X., Zhang, M.J.: Interval programming models for matrix games with interval payoffs. Optim. Methods Softw. 27, 1–16 (2012)Google Scholar
  6. 6.
    Gao, J.: Uncertain bimatrix game with applications. Fuzzy Optim. Decis. Mak. 12, 65–78 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Li, D.F.: Linear programming approach to solve interval-valued matrix games. J. Omega 39, 655–666 (2011)CrossRefGoogle Scholar
  8. 8.
    Couchman, P., Kouvaritakis, B., Cannon, M., Prashad, F.: Gaming strategy for electric power with random demand. IEEE Trans. Power Syst. 20, 1283–1292 (2005)CrossRefGoogle Scholar
  9. 9.
    Mazadi, M., Rosehart, W.D., Zareipour, H., Malik, O.P., Oloomi, M.: Impact of wind integration on electricity markets: a chance-constrained Nash-Cournot model. Int. Trans. Electr. Energy Syst. 23, 83–96 (2013)CrossRefGoogle Scholar
  10. 10.
    Valenzuela, J., Mazumdar, M.: Cournot prices considering generator availability and demand uncertainty. IEEE Trans. Power Syst. 22, 116–125 (2007)CrossRefGoogle Scholar
  11. 11.
    Wolf, D.D., Smeers, Y.: A stochastic version of a Stackelberg-Nash-Cournot equilibrium model. Manag. Sci. 43, 190–197 (1997)CrossRefzbMATHGoogle Scholar
  12. 12.
    Dentcheva, D., Ruszczyński, A.: Optimization with stochastic dominance constraints. SIAM J. Optim. 14, 548–566 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    DeMiguel, V., Xu, H.: A stochastic multiple leader Stackelberg model: analysis, computation, and application. Oper. Res. 57, 1220–1235 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jadamba, B., Raciti, F.: Variational inequality approach to stochastic Nash equilibrium problems with an application to Cournot oligopoly. J. Optim. Theory Appl. 165, 1050–1070 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ravat, U., Shanbhag, U.V.: On the characterization of solution sets of smooth and nonsmooth convex stochastic Nash games. SIAM J. Optim. 21, 1168–1199 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Xu, H., Zhang, D.: Stochastic Nash equilibrium problems: sample average approximation and applications. Comput. Optim. Appl. 55, 597–645 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Faraci, F., Jadamba, B., Raciti, F.: On stochastic variational inequalities with mean value constraints. J. Optim. Theory Appl. 171, 675–693 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Charnes, A., Cooper, W.W.: Deterministic equivalents for optimizing and satisficing under chance constraints. Oper. Res. 11, 18–39 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Prékopa, A.: Stochastic Programming. Springer, Netherlands (1995)CrossRefzbMATHGoogle Scholar
  20. 20.
    Singh, V.V., Jouini, O., Lisser, A.: Existence of Nash equilibrium for chance-constrained games. Oper. Res. Lett. 44, 640–644 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Singh, V.V., Jouini, O., Lisser, A.: Distributionally robust chance-constrained games: existence and characterization of Nash equilibrium. Optim. Lett. 11, 1385–1405 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Cheng, J., Leung, J., Lisser, A.: Random-payoff two-person zero-sum game with joint chance constraints. Eur. J. Oper. Res. 252, 213–219 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Blau, R.A.: Random-payoff two person zero-sum games. Oper. Res. 22, 1243–1251 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Cassidy, R.G., Field, C.A., Kirby, M.J.L.: Solution of a satisficing model for random payoff games. Manag. Sci. 19, 266–271 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Charnes, A., Kirby, M.J.L., Raike, W.M.: Zero-zero chance-constrained games. Theory Probab. Appl. 13, 628–646 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Song, T.: Systems and Management Science by Extremal Methods, chap. On random payoff matrix games, pp. 291–308. Springer, Berlin (1992)Google Scholar
  27. 27.
    Fang, K.T., Kotz, S., Ng, K.W.: Symmetric Multivariate and Related Distributions. Chapman and Hall, London (1990)CrossRefzbMATHGoogle Scholar
  28. 28.
    R.T, Rockafellar: Convex Analysis. Princeton University Press, Princeton (1970)Google Scholar
  29. 29.
    Bazaraa, M., Sherali, H., Shetty, C.: Nonlinear Programming: Theory and Algorithms, 3rd edn. Wiley, USA (2006)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology DelhiNew DelhiIndia
  2. 2.Laboratoire de Recherche en InformatiqueUniversité Paris SudOrsayFrance

Personalised recommendations