Advertisement

Journal of Optimization Theory and Applications

, Volume 178, Issue 2, pp 627–659 | Cite as

Analysis of an Optimal Control Problem Related to the Anaerobic Digestion Process

Article

Abstract

Our aim in this work is to synthesize optimal feeding strategies that maximize, over a time period, the biogas production in a continuously filled bioreactor controlled by its dilution rate. Such an anaerobic process is described by a four-dimensional dynamical system. Instead of modeling the optimization of the biogas production as a Lagrange-type optimal control problem, we propose a slightly different optimal control approach in this paper: We study the minimal time control problem to reach a target point, which is chosen in such a way that it maximizes the biogas production at steady state. Thanks to the Pontryagin maximum principle and the geometric control theory, we provide an optimal feedback control for the minimal time control problem, when the initial conditions are taken within the invariant and attractive manifold of the system. The optimal synthesis exhibits turnpike and anti-turnpike singular arcs and a cut locus.

Keywords

Geometric control Pontryagin maximum principle Optimal feedback Chemostat model 

Mathematics Subject Classification

49J15 49M30 93A30 

Notes

Acknowledgements

The authors are grateful to Jérôme Harmand, Alain Rapaport and Victor Riquelme for their helpful discussions on this subject and to Aurélien Binet for contributing to the determination of the cut locus. The first author would like to thank INRA Montpellier and the UMR MISTEA for providing him a half-year delegation during the 2017-2018 academic year. This research benefited from the support of the FONDECYT grant (Chile) N 1160567 and Proyecto Redes 150011 (Chile) and from the LABEX NUMEV Montpellier. The third author was also partially supported by the Basal Project CMM Universidad de Chile.

References

  1. 1.
    Kelessidis, A., Stasinakis, A.S.: Comparative study of the methods used for treatment and final disposal of sewage sludge in european countries. Waste manag. 32(6), 1186–1195 (2012)CrossRefGoogle Scholar
  2. 2.
    Haddon, A., Harmand, J., Ramírez, H., Rapaport, A.: Guaranteed value strategy for the optimal control of biogas production in continuous bio-reactors. In: IFAC Word Congress 2017 (July 9–14, 2017)Google Scholar
  3. 3.
    Bernard, O., Hadj-Sadok, Z., Dochain, D., Genovesi, A., Steyer, J.P.: Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnol. Bioeng. 75(4), 424–438 (2001)CrossRefGoogle Scholar
  4. 4.
    Harmand, J., Lobry, C., Rapaport, A., Sari, T.: The Chemostat: Mathematical Theory of Microorganism Cultures. Wiley-ISTE, London (2017)CrossRefMATHGoogle Scholar
  5. 5.
    Novick, A., Szilard, L.: Experiments with the chemostat on spontaneous mutations of bacteria. Proc. Ntl. Acad. Sci. 36(12), 708–719 (1950)CrossRefGoogle Scholar
  6. 6.
    Smith, H.L., Waltman, P.: The Theory of the Chemostat, Cambridge Studies in Mathematical Biology, vol. 13. Cambridge University Press, Cambridge (1995). Dynamics of microbial competitionCrossRefGoogle Scholar
  7. 7.
    Bayen, T., Gajardo, P.: A note on the steady state optimization of the biogas production in a two-stage anaerobic digestion model. submitted (2017)Google Scholar
  8. 8.
    Boscain, U., Piccoli, B.: Optimal Syntheses for Control Systems on 2-D Manifolds, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 43. Springer, Berlin (2004)MATHGoogle Scholar
  9. 9.
    Caillau, J.B., Cots, O., Gergaud, J.: Differential continuation for regular optimal control problems. Optim. Methods Softw. 27(2), 177–196 (2012)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Sbarciog, M., Loccufier, M., Vande Wouwer, A.: On the optimization of biogas production in anaerobic digestion systems. IFAC Proc. Vol. 44(1), 7150–7155 (2011)CrossRefGoogle Scholar
  11. 11.
    Sbarciog, M., Loccufier, M., Van de Wouwer, M.: An optimizing start-up strategy for a bio-methanator. Bioprocess Biosyst. Eng. 35(4), 565–578 (2012)CrossRefGoogle Scholar
  12. 12.
    Sbarciog, M., Moreno, J.A., Van de Wouwer, A.: A biogas-based switching control policy for anaerobic digestion systems1. IFAC Proc. Vol. 45(15), 603–608 (2012)CrossRefGoogle Scholar
  13. 13.
    Benyahia, B., Sari, T., Cherki, B., Harmand, J.: Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes. J. Process Control 22(6), 1008–1019 (2012)CrossRefGoogle Scholar
  14. 14.
    Bayen, T., Harmand, J., Sebbah, M.: Time-optimal control of concentration changes in the chemostat with one single species. Appl. Math. Model. 50, 257–278 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Cesari, L.: Optimization—Theory and Applications, Applications of Mathematics (New York), vol. 17. Springer, New York (1983). (Problems with ordinary differential equations)Google Scholar
  16. 16.
    Bayen, T., Rapaport, A., Sebbah, M.: Minimal time control of the two tanks gradostat model under a cascade inputs constraint. SIAM J. Control Optim. 52(4), 2568–2594 (2014)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Schättler, H., Ledzewicz, U.: Geometric Optimal Control, Interdisciplinary Applied Mathematics, vol. 38. Springer, New York (2012). (Theory, methods and examples)CrossRefMATHGoogle Scholar
  18. 18.
    Bonnard, B., Chyba, M.: Singular Trajectories and Their Role in Control Theory, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 40. Springer, Berlin (2003)MATHGoogle Scholar
  19. 19.
    Bonnard, B., Pelletier, M.: Time minimal synthesis for planar systems in the neighborhood of a terminal manifold of codimension one. J. Math. Syst. Estim. Control 5(3), 22 (1995)MathSciNetMATHGoogle Scholar
  20. 20.
    Sussmann, H.J.: The structure of time-optimal trajectories for single-input systems in the plane: the general real analytic case. SIAM J. Control Optim. 25(4), 868–904 (1987)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Sussmann, H.J.: The structure of time-optimal trajectories for single-input systems in the plane: the \(C^\infty \) nonsingular case. SIAM J. Control Optim. 25(2), 433–465 (1987)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Sussmann, H.J.: Regular synthesis for time-optimal control of single-input real analytic systems in the plane. SIAM J. Control Optim. 25(5), 1145–1162 (1987)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Allgower, E., Georg, K.: Introduction to Numerical Continuation Methods. Society for Industrial and Applied Mathematics (2003)Google Scholar
  24. 24.
    Bonnard, B., Cots, O., Glaser, S.J., Lapert, M., Sugny, D., Zhang, Y.: Geometric optimal control of the contrast imaging problem in nuclear magnetic resonance. IEEE Trans. Automat. Control 57(8), 1957–1969 (2012)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IMAGUniv Montpellier, CNRSMontpellierFrance
  2. 2.MISTEAUniv Montpellier, INRA, Montpellier SupAgroMontpellierFrance
  3. 3.Toulouse Univ. INP-ENSEEIHT, IRIT and CNRSToulouseFrance
  4. 4.Departamento de MatemáticaUniversidad Técnica Federico Santa MaríaValparaisoChile

Personalised recommendations