Characterizations of Copulas Attaining the Bounds of Multivariate Kendall’s Tau

Article

Abstract

Kendall’s tau is one of the most popular measures of concordance, and even in the multivariate case exact upper and lower bounds of Kendall’s tau are known. The present paper provides characterizations of the copulas attaining the bounds of multivariate Kendall’s tau, mainly in terms of the copula measure, but also via Kendall’s distribution function and for shuffles of copulas.

Keywords

Kendall’s tau Measures of concordance Copulas Shuffles of copulas Countermonotonicity 

Mathematics Subject Classification

49J99 49K99 

Notes

Acknowledgements

The authors are most grateful to the referees whose thoughtful comments led to a more comprehensive discussion of the subject. The first author also acknowledges the support of the Faculty of Economics and Management, Free University of Bozen–Bolzano, via the project NEW-DEMO.

References

  1. 1.
    Fuchs, S., Schmidt, K.D.: Bivariate copulas: transformations, asymmetry and measures of concordance. Kybernetika 50, 109–125 (2014)MathSciNetMATHGoogle Scholar
  2. 2.
    Úbeda-Flores, M.: Multivariate versions of Blomqvist’s beta and Spearman’s footrule. Ann. Inst. Stat. Math. 57, 781–788 (2005)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Durante, F., Sempi, C.: Principles of Copula Theory. Chapman & Hall, London (2016)MATHGoogle Scholar
  4. 4.
    Nelsen, R.B.: An Introduction to Copulas, Second edn. Springer Series in Statistics. Springer, New York (2006)Google Scholar
  5. 5.
    Fuchs, S.: Multivariate copulas: transformations, symmetry, order and measures of concordance. Kybernetika 50, 725–743 (2014)MathSciNetMATHGoogle Scholar
  6. 6.
    Fuchs, S.: A biconvex form for copulas. Depend. Model. 4, 63–75 (2016)MathSciNetMATHGoogle Scholar
  7. 7.
    Nelsen, R.B.: Concordance and copulas: a survey. In: Cuadras, C.M., Fortiana, J., Rodriguez-Lallena, J.A. (eds.) Distributions with Given Marginals and Statistical Modelling, pp. 169–177. Kluwer Academic Publishers, Dordrecht (2002)CrossRefGoogle Scholar
  8. 8.
    Genest, C., Nešlehová, J., Ben Ghorbal, N.: Estimators based on Kendall’s tau in multivariate copula models. Aust. N. Z. J. Stat. 53, 157–177 (2011)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Ko, B., Ahn, J.Y.: On multivariate countermonotonic copulas and their actuarial application. Lobachevskii J. Math. 37, 387–396 (2016)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Lee, W., Cheung, K.C., Ahn, J.Y.: Multivariate countermonotonicity and the minimal copulas. J. Comput. Appl. Math. 317, 589–602 (2017)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lee, W., Ahn, J.Y.: On the multidimensional extension of countermonotonicity and its applications. Insur. Math. Econom. 56, 68–79 (2014)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. Elsevier (North-Holland), New York (1983)MATHGoogle Scholar
  13. 13.
    Durante, F., Fernández-Sánchez, J.: Multivariate shuffles and approximation of copulas. Stat. Probab. Lett. 80, 1827–1834 (2010)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Free University of Bozen–BolzanoBozenItaly
  2. 2.Technische Universität DresdenDresdenGermany

Personalised recommendations