Advertisement

Optimal Potentials of Measure Differential Equations with Given Spectral Data

  • Zhiyuan WenEmail author
  • Lijuan Zhou
  • Meirong Zhang
Article
  • 32 Downloads

Abstract

In this paper, we consider the Dirichlet eigenvalue problems of second-order measure differential equations with a general distribution of potentials. The following optimization problem will be solved: when the m-th eigenvalue is known, we will find explicitly what distribution of potentials will have the minimal total variation. The main tool used herein is some deep continuity results on eigenvalues.

Keywords

Measure differential equation Eigenvalue Potential Measure Spectral data 

Mathematics Subject Classification

34L15 34L40 58C07 

Notes

Acknowledgements

The first two authors are supported by the Scientific Starting Research Foundation of Inner Mongolia University (No. 21200-5175108 and No. 20100-5165106). The third author is supported by the National Natural Science Foundation of China (Grant No. 11790273).

References

  1. 1.
    Derlet, A., Gossez, J.-P., Takáč, P.: Minimization of eigenvalues for a quasilinear elliptic Neumann problem with indefinite weight. J. Math. Anal. Appl. 371, 69–79 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Lou, Y., Yanagida, E.: Minimization of the principle eigenvalue for an elliptic boundary value problem with indefinite weight, and applications to population dynamics. Jpn. J. Ind. Appl. Math. 23, 275–292 (2006)CrossRefzbMATHGoogle Scholar
  3. 3.
    Zhang, M.: Extremal values of smallest eigenvalues of Hill’s operators with potentials in \(L^1\) balls. J. Differ. Equ. 246, 4188–4220 (2009)CrossRefzbMATHGoogle Scholar
  4. 4.
    Wei, Q., Meng, G., Zhang, M.: Extremal values of eigenvalues of Sturm–Liouville operators with potentials in \(L^1\) balls. J. Differ. Equ. 247, 364–400 (2009)CrossRefzbMATHGoogle Scholar
  5. 5.
    Meng, G., Yan, P., Zhang, M.: Minimization of eigenvalues of one-dimensional \(p\)-Laplacian with integrable potentials. J. Optim. Theory Appl. 156, 294–319 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Meng, G.: Extremal problems for eigenvalues of measure differential equations. Proc. Am. Math. Soc. 143, 1991–2002 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Qi, J., Chen, S.: Extremal norms of the potentials recovered from inverse Dirichlet problems. Inverse Probl. 32, 035007 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Wen, Z., Zhang, M.: Minimization of eigenvalues and construction of non-degenerate potentials for the one-dimensional \(p\)-Laplacian. Sci. China Math. 59, 49–66 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics. Wiley, New York (1953)zbMATHGoogle Scholar
  10. 10.
    Zettl, A.: Sturm-Liouville theory. Mathematical Surveys and Monographs, vol. 121. American Mathematical Society, Providence (2005)zbMATHGoogle Scholar
  11. 11.
    Krein, M.G.: On certain problems on the maximum and minimum of characteristic values and on the Lyapunov zones of stability. Am. Math. Soc. Transl. 1, 163–187 (1955)MathSciNetGoogle Scholar
  12. 12.
    Telnova, M.: Some estimates for the first eigenvalue of the Sturm–Liouville problem with a weight integral condition. Math. Bohem. 137, 229–238 (2012)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter. Czechoslovak Math. J. 7, 418–449 (1957)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kurzweil, J.: Generalized ordinary differential equations. Czechoslov. Math. J. 8, 360–388 (1958)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Schwabik, S., Tvrdý, M., Vejvoda, O.: Differential and Integral Equations: Boundary Value Problems and Adjoints. Academia/D. Reidel, Praha/Dordrecht (1979)zbMATHGoogle Scholar
  16. 16.
    Schwabik, S.: Generalized Ordinary Differential Equations. World Scientific, Singapore (1992)CrossRefzbMATHGoogle Scholar
  17. 17.
    Tvrdý, M.: Differential and integral equations in the space of regulated functions. Mem. Differ. Equ. Math. Phys. 25, 1–104 (2002)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Meng, G., Zhang, M.: Dependence of solutions and eigenvalues of measure differential equations on measures. J. Differ. Equ. 254, 2196–2232 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zhang, M., et al.: On the number and complete continuity of weighted eigenvalues of measure differential equations. Differ. Integr. Equ. 31, 761–784 (2018)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Carter, M., Brunt, B.: The Lebesgue–Stieltjes Integral: A Practical Introduction. Springer, New York (2000)zbMATHGoogle Scholar
  21. 21.
    Dunford, N., Schwarz, J.T.: Linear Operators. Part I. Interscience Publishers, New York (1958)Google Scholar
  22. 22.
    Hildebrandt, T.H.: Definitions of Stielljes integrals of the Riemann type. Am. Math. Mon. 45, 265–278 (1938)CrossRefzbMATHGoogle Scholar
  23. 23.
    Megginson, R.E.: An Introduction to Banach Space Theory. Graduate Texts in Mathematics, vol. 183. Springer, New York (1998)zbMATHGoogle Scholar
  24. 24.
    Stein, E., Shakarchi, R.: Real Analysis: Measure Theory, Integration, and Hilbert Spaces. Princeton University Press, Princeton (2005)zbMATHGoogle Scholar
  25. 25.
    Halas, Z., Tvrdý, M.: Continuous dependence of solutions of generalized linear differential equations on a parameter. Funct. Differ. Equ. 16, 299–313 (2009)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematical SciencesInner Mongolia UniversityHuhhotChina
  2. 2.Department of Mathematical SciencesTsinghua UniversityBeijingChina

Personalised recommendations