Advertisement

Combination of Direct Methods and Homotopy in Numerical Optimal Control: Application to the Optimization of Chemotherapy in Cancer

  • Antoine OlivierEmail author
  • Camille Pouchol
Article
  • 76 Downloads

Abstract

We consider a state-constrained optimal control problem of a system of two non-local partial differential equations, which is an extension of the one introduced in a previous work in mathematical oncology. The aim is to control the tumor size through chemotherapy while avoiding the emergence of resistance to the drugs. The numerical approach to solve the problem was the combination of direct methods and continuation on discretization parameters, which happen to be insufficient for the more complicated model, where diffusion is added to account for mutations. In the present paper, we propose an approach relying on changing the problem so that it can theoretically be solved thanks to a Pontryagin’s maximum principle in infinite dimension. This provides an excellent starting point for a much more reliable and efficient algorithm combining direct methods and continuations. The global idea is new and can be thought of as an alternative to other numerical optimal control techniques.

Keywords

Optimal control Direct methods Homotopy Mathematical oncology Pontryagin’s Maximum Principle 

Mathematics Subject Classification

49M05 49M25 92C50 

Notes

Acknowledgements

Both authors wish to thank Maxime Chupin, for his thorough knowledge of the modeling language AMPL and the interior-point solver IPOPT, as well as for his valuable help to get us started.

References

  1. 1.
    Pouchol, C., Clairambault, J., Lorz, A., Trélat, E.: Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy. Journal de Mathématiques Pures et Appliquées 116, 268–308 (2017).  https://doi.org/10.1016/j.matpur.2017.10.007 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Lorz, A., Lorenzi, T., Clairambault, J., Escargueil, A., Perthame, B.: Effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors. arXiv preprint arXiv:1312.6237 (2013)
  3. 3.
    Fourer, R., Gay, D.M., Kernighan, B.W.: A modeling language for mathematical programming. Duxbury Press 36(5), 519–554 (2002)zbMATHGoogle Scholar
  4. 4.
    Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Trélat, E.: Optimal control and applications to aerospace: some results and challenges. J. Optim. Theory Appl. 154(3), 713–758 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cerf, M., Haberkorn, T., Trélat, E.: Continuation from a flat to a round earth model in the coplanar orbit transfer problem. Optimal Control Appl. Methods 33(6), 654–675 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chupin, M., Haberkorn, T., Trélat, E.: Low-thrust Lyapunov to Lyapunov and Halo to Halo with \(L^2\)-minimization. ESAIM: Math. Model. Numer. Anal. 51(3), 965–996 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gergaud, Joseph, Haberkorn, Thomas: Homotopy method for minimum consumption orbit transfer problem. ESAIM: COCV 12(2), 294–310 (2006).  https://doi.org/10.1051/cocv:2006003 MathSciNetzbMATHGoogle Scholar
  9. 9.
    Caillau, J.B., Daoud, B., Gergaud, J.: Minimum fuel control of the planar circular restricted three-body problem. Celest. Mech. Dyn. Astron. 114(1), 137–150 (2012).  https://doi.org/10.1007/s10569-012-9443-x MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bulirsch, R., Nerz, E., Pesch, H.J., von Stryk, O.: Combining direct and indirect methods in optimal control: range maximization of a hang glider. In: Bulirsch, R., Miele, A., Stoer, J., Well, K. (eds.) Optimal Control. ISNM International Series of Numerical Mathematics, vol. 111. Birkhäuser, Basel (1993)Google Scholar
  11. 11.
    Pesch, H.J.: A practical guide to the solution of real-life optimal control problems. Control Cybern. 23(1), 2 (1994)MathSciNetGoogle Scholar
  12. 12.
    von Stryk, O., Bulirsch, R.: Direct and indirect methods for trajectory optimization. Ann. Oper. Res. 37(1), 357–373 (1992).  https://doi.org/10.1007/BF02071065 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Diekmann, O., et al.: A beginner’s guide to adaptive dynamics. Banach Center Publ. 63, 47–86 (2004)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Diekmann, O., Jabin, P.E., Mischler, S., Perthame, B.: The dynamics of adaptation: an illuminating example and a Hamilton–Jacobi approach. Theor. Popul. Biol. 67(4), 257–271 (2005)CrossRefzbMATHGoogle Scholar
  15. 15.
    Perthame, B.: Transport Equations in Biology. Springer, New York (2006)zbMATHGoogle Scholar
  16. 16.
    Chisholm, R.H., Lorenzi, T., Clairambault, J.: Cell population heterogeneity and evolution towards drug resistance in cancer: biological and mathematical assessment, theoretical treatment optimisation. Biochimica et Biophysica Acta (BBA) - General Subjects 1860(11), 2627–2645 (2016).  https://doi.org/10.1016/j.bbagen.2016.06.009 CrossRefGoogle Scholar
  17. 17.
    Schättler, H., Ledzewicz, U.: Optimal Control for Mathematical Models of Cancer Therapies. Springer, New York (2015).  https://doi.org/10.1007/978-1-4939-2972-6 CrossRefzbMATHGoogle Scholar
  18. 18.
    Costa, M., Boldrini, J., Bassanezi, R.: Optimal chemical control of populations developing drug resistance. Math. Med. Biol. 9(3), 215–226 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kimmel, M., Świerniak, A.: Control theory approach to cancer chemotherapy: benefiting from phase dependence and overcoming drug resistance. In: Friedman, A. (ed.) Tutorials in Mathematical Biosciences III. Lecture Notes in Mathematics, vol. 1872, pp. 185–221. Springer, Berlin (2006)Google Scholar
  20. 20.
    Ledzewicz, U., Schättler, H.: Drug resistance in cancer chemotherapy as an optimal control problem. Discrete Contin. Dyn. Syst. Ser. B 6(1), 129 (2006)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Ledzewicz, U., Schättler, H.: On optimal chemotherapy for heterogeneous tumors. J. Biol. Syst. 22(02), 177–197 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Carrère, C.: Optimization of an in vitro chemotherapy to avoid resistant tumours. J. Theor. Biol. 413, 24–33 (2017).  https://doi.org/10.1016/j.jtbi.2016.11.009 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Lorz, A., Lorenzi, T., Hochberg, M.E., Clairambault, J., Perthame, B.: Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies. ESAIM: Math. Model. Numer. Anal. 47(02), 377–399 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Greene, J., Lavi, O., Gottesman, M.M., Levy, D.: The impact of cell density and mutations in a model of multidrug resistance in solid tumors. Bull. Math. Biol. 76(3), 627–653 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lorenzi, T., Chisholm, R.H., Desvillettes, L., Hughes, B.D.: Dissecting the dynamics of epigenetic changes in phenotype-structured populations exposed to fluctuating environments. J. Theor. Biol. 386, 166–176 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Lorz, A., Lorenzi, T., Clairambault, J., Escargueil, A., Perthame, B.: Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors. Bull. Math. Biol. 77(1), 1–22 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Li, X., Yong, J.: Optimal Control Theory for Infinite Dimensional Systems. Springer, New York (2012)Google Scholar
  28. 28.
    Leman, H., Meleard, S., Mirrahimi, S.: Influence of a spatial structure on the long time behavior of a competitive Lotka–Volterra type system. Discrete Contin. Dyn. Syst. Ser. B (2014)  https://doi.org/10.1016/j.matpur.2017.10.007
  29. 29.
    Bonnefon, O., Coville, J., Legendre, G.: Concentration phenomenon in some non-local equation (2015). Preprint arXiv:1510.01971
  30. 30.
    Cabré, X., Roquejoffre, J.M.: The influence of fractional diffusion in fisher-KPP equations. Commun. Math. Phys. 320(3), 679–722 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Coville, J.: Convergence to equilibrium for positive solutions of some mutation–selection model (2013). Preprint arXiv:1308.6471
  32. 32.
    Chisholm, R.H., Lorenzi, T., Lorz, A.: Effects of an advection term in nonlocal Lotka–Volterra equations. Commun. Math. Sci. 14(4), 1181–1188 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire Jacques-Louis Lions, CNRS UMR 7598, UPMC Univ Paris 06Sorbonne UniversitésParisFrance
  2. 2.INRIA ParisINRIA Team MambaParisFrance

Personalised recommendations