A Weak Martingale Approach to Linear-Quadratic McKean–Vlasov Stochastic Control Problems

  • Matteo Basei
  • Huyên PhamEmail author


We propose a simple and direct approach for solving linear-quadratic mean-field stochastic control problems. We study both finite-horizon and infinite-horizon problems and allow notably some coefficients to be stochastic. Extension to the common noise case is also addressed. Our method is based on a suitable version of the martingale formulation for verification theorems in control theory. The optimal control involves the solution to a system of Riccati ordinary differential equations and to a linear mean-field backward stochastic differential equation; existence and uniqueness conditions are provided for such a system. Finally, we illustrate our results through an application to the production of an exhaustible resource.


Mean-field SDEs Linear-quadratic optimal control Weak martingale optimality principle Riccati equation 

Mathematics Subject Classification

49N10 49L20 93E20 



This work is part of the ANR Project CAESARS (ANR-15-CE05-0024) and also supported by FiME (Finance for Energy Market Research Centre) and the “Finance et Développement Durable—Approches Quantitatives” EDF—CACIB Chair.


  1. 1.
    Pham, H.: Linear quadratic optimal control of conditional McKean–Vlasov equation with random coefficients and applications. Probab. Uncertain. Quant. Risk 1, 7 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bensoussan, A., Frehse, J., Yam, P.: Mean Field Games and Mean Field Type Control Theory. Springer Briefs in Mathematics. Springer, Berlin (2013)CrossRefzbMATHGoogle Scholar
  3. 3.
    Carmona, R., Delarue, F.: Probabilistic Theory of Mean Field Games with Applications I–II. Springer, Berlin (2018)zbMATHGoogle Scholar
  4. 4.
    Bensoussan, A., Sung, K.C.J., Yam, S.C.P., Yung, S.P.: Linear-quadratic mean field games. J. Optim. Theory Appl. 169(2), 1–34 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Yong, J.: A linear-quadratic optimal control problem for mean-field stochastic differential equations. SIAM J. Control Optim. 51(4), 2809–2838 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Huang, J., Li, X., Yong, J.: A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Math. Control Relat. Fields 5(1), 97–139 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Graber, P.J.: Linear quadratic mean field type control and mean field games with common noise, with application to production of an exhaustible resource. Appl. Math. Optim. 74(3), 459–486 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Sun, J.: Mean-field stochastic linear quadratic optimal control problems: open-loop solvabilities. ESAIM Control Optim. Calc. Var. 23(3), 1099–1127 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Li, X., Sun, J., Yong, J.: Mean-field stochastic linear quadratic optimal control problems: closed-loop solvability. Probab. Uncertain. Quant. Risk 1, 2 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Aid, R., Basei, M., Pham, H.: The coordination of centralised and distributed generation. arXiv:1705.01302
  11. 11.
    El Karoui, N.: Les aspects probabilistes du contrôle stochastique. In: 9th Saint Flour Probability Summer School-1979. Lecture Notes in Mathematics, vol. 876, Springer, pp. 73–238 (1981)Google Scholar
  12. 12.
    Peng, S.: Stochastic Hamilton Jacobi Bellman equations. SIAM J. Control Optim. 30(2), 284–304 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Balata, A., Huré, C., Laurière, M., Pham, H., Pimentel, I.: A class of finite-dimensional numerically solvable McKean–Vlasov control problems. arXiv:1803.00445
  14. 14.
    Yong, J., Zhou, X.: Stochastic Controls. Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar
  15. 15.
    Li, X., Sun, J., Xiong, J.: Linear quadratic optimal control problems for mean-field backward stochastic differential equations. Appl. Math. Optim. (2017).
  16. 16.
    Sun, J., Yong, J.: Stochastic linear quadratic optimal control problems in infinite horizon. Appl. Math. Optim. 78(1), 145–183 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Guéant, O., Lasry, J.-M., Lions, P.-L.: Mean Field Games and Applications. Paris-Princeton Lectures on Mathematical Finance 2010, pp. 205–266. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  18. 18.
    Chan, P., Sircar, R.: Bertrand and Cournot mean field games. Appl. Math. Optim. 71(3), 533–569 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Industrial Engineering and Operations Research Department (IEOR)University of California, BerkeleyBerkeleyUSA
  2. 2.Laboratoire de Probabilités, Statistique et Modélisation (LPSM)Université Paris Diderot and CREST-ENSAEParisFrance

Personalised recommendations