Advertisement

A Student-Choice Model to Address Diverse Needs and Promote Active Learning

  • Travis R. McDowellEmail author
  • Emmalou T. Schmittzehe
  • Amanda J. Duerden
  • Dan Cernusca
  • Harvest Collier
  • Klaus Woelk
Article
  • 23 Downloads

Abstract

A student-choice model course redesign was used to counteract a large increase in student enrollment, improve the quality of instruction, and preserve student success. This model is an instructional technique that allows students to choose how to engage in a course. Using this model in a first-semester college-level general chemistry course, online options were created to augment the traditional face-to-face course. The traditional lecture time was reduced from 3 to 2 h per week while the traditional recitation time was increased from 1 to 2 h per week. The recitation component was also transitioned from a supplemental lecture session into a problem-solving active-learning component. A mandatory rotation between face-to-face and online options at the start of the semester was necessary to assist students in making an informed choice about what options best fit their needs. Pre- and post-redesign student performance data (2008–2016) and post-redesign student enrollment data (2012–2016) were evaluated. Course performance was maintained and often improved in post-redesign years, and was generally equivalent in the different course combinations.

Keywords

STEM education General chemistry Gatekeeper course Collaborative learning Blended instruction Student-choice model 

Notes

Acknowledgements

Guidance in course redesign was provided by the National Center for Academic Transformation. The authors thank the Missouri University of Science & Technology’s Educational Technology Division for assistance with the implementation of necessary teaching technology.

Funding

Funding for this project was provided to KW by the State of Missouri (Governor’s Large-Enrollment Multi-Section Redesign Initiative), by the University of Missouri System (Technology-supported Active-learning Course Redesign), and by the Missouri S&T Provost Office (General Chemistry I Buffet-Model Whole-Course Redesign), and to ES by a Missouri S&T Provost’s eFellows Grant (Tailoring Resources and Increasing Accessibility for Students in General Chemistry). This work was funded by the Missouri Learning Commons, the University of Missouri System, the Office of the Provost at Missouri University of Science & Technology, and the Missouri University of Science and Technology Chemistry Department.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

The research uses large-scale secondary datasets. No data were directly collected from human participants, and data are not traceable to individual participants. All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee.

Supplementary material

10956_2019_9768_MOESM1_ESM.pdf (271 kb)
ESM 1 (PDF 270 kb)
10956_2019_9768_MOESM2_ESM.pdf (292 kb)
ESM 2 (PDF 292 kb)

References

  1. Barnes, K., Marateo, R. C., & Ferris, S. P. (2007). Teaching and learning with the net generation. Innovate: Journal of Online Education, 3(4), Article 1), 1–8.Google Scholar
  2. Bruff, D. (2009). Teaching with classroom response systems: creating active learning environments. Hoboken: Wiley.Google Scholar
  3. Carlson, S. (2005). The net generation goes to college. The Chronicle of Higher Education, 52(7), A34.Google Scholar
  4. Charlton, B. G. (2006). Lectures are such an effective teaching method because they exploit evolved human psychology to improve learning. Medical Hypothesis, 67(6), 1261–1265.CrossRefGoogle Scholar
  5. Duncan, D. (2005). Clickers in the classroom: how to enhance science teaching using classroom response systems. Upper Saddle River: Pearson.Google Scholar
  6. Dziuban, C., Moskal, P., & Hartman, J. (2005). Higher education, blended learning, and the generations: knowledge is power-no more. In J. Bourne & J. C. Moore (Eds.), Elements of quality online education: engaging communities (pp. 85–100). Needham: Sloan Center for Online Education.Google Scholar
  7. Gasiewski, J. A., Eagan, M. K., Garcia, G. A., Hurtado, S., & Chang, M. J. (2012). From gatekeeping to engagement: a multicontextual, mixed method study of student academic engagement in introductory STEM courses. Research in Higher Education, 53(2), 229–261.CrossRefGoogle Scholar
  8. Goldenberg, E. P. (2000). Thinking (and talking) about technology in math classrooms. Issues in Mathematics Education. The K-12 Mathematics Curriculum Center. http://mcc.edc.org/pdf/iss_tech.pdf. Accessed November 1, 2018.
  9. Harrington, A. M. (2010). Problematizing the hybrid classroom for ESL/EFL students. The Electronic Journal for English as a Second Language, 14, Article 3, 1–13.Google Scholar
  10. Hart, A. G., Stafford, R., & Goodenough, A. E. (2011). Bridging the lecturer/student divide: the role of residential field courses. Bioscience Education, 17(1), 1–5.CrossRefGoogle Scholar
  11. Inglis, M., Palipana, A., Trenholm, S., & Ward, J. (2011). Individual differences in students’ use of optional learning resources. Journal of Computer Assisted Learning, 27(6), 490–502.CrossRefGoogle Scholar
  12. Iyengar, S. (2007). To read or not to read: a question of national consequence. National Endowment for the Arts. Research Report #47. https://www.arts.gov/sites/default/files/ToRead.pdf. Accessed November 1, 2018.
  13. Lai, K.-W., Khaddage, F., & Knezek, G. (2013). Blending student technology experiences in formal and informal learning. Journal of Computer Assisted Learning, 29(5), 414–425.CrossRefGoogle Scholar
  14. Lake, D. A. (2001). Student performance and perceptions of a lecture-based course compared with the same course utilizing group discussion. Physical Therapy, 81(3), 896–902.Google Scholar
  15. Lei, J. (2010). Quantity versus quality: a new approach to examine the relationship between technology use and student outcomes. British Journal of Educational Technology, 41(3), 455–472.CrossRefGoogle Scholar
  16. Mazur, E. (1997). Peer instruction: a user’s manual, series in educational innovation. Upper Saddle River: Prentice Hall.Google Scholar
  17. McDowell, T. R., Schmittzehe, E. T., Woelk, K., & Collier, H. (2016). Fostering a positive collaborative learning experience in an optional student success program. Journal of Modern Education Review, 6(8), 561–567.CrossRefGoogle Scholar
  18. Mervis, J. (2010). Better intro courses seen as key to reducing attrition of STEM majors. Science, 330(6002), 306–306.CrossRefGoogle Scholar
  19. Moog, R. S., & Spencer, J. N. (2008). Process oriented guided inquiry learning. Oxford: Oxford University Press.CrossRefGoogle Scholar
  20. Quitadamo, I. J., Brahler, C. J., & Crouch, G. J. (2009). Peer-led team learning: a prospective method for increasing critical thinking in undergraduate science courses. Science Education, 18(1), 29–39.Google Scholar
  21. Sawatsky, A. P., Berlacher, K., & Granieri, R. (2014). Using an ACTIVE teaching format versus a standard lecture format for increasing resident interaction and knowledge achievement during noon conference: a prospective, controlled study. BMC Medical Education, 14(1), Article 129), 1–6.CrossRefGoogle Scholar
  22. Silverthorn, D. U. (2006). Teaching and learning in the interactive classroom. Advances in Physiology Education, 30(4), 135–140.CrossRefGoogle Scholar
  23. Sparrow, B., Liu, J., & Wegner, D. M. (2011). Google effects on memory: cognitive consequences of having information at our fingertips. Science, 333(6043), 776–778.CrossRefGoogle Scholar
  24. Talbert, R. (2012). Four things lecture is good for, The Chronicle 02/13/2012 http://www.chronicle.com/blognetwork/castingoutnines/2012/02/13/four-things-lecture-is-good-for/. Accessed November 1, 2018.
  25. Twigg, C. A. (2003). Improving learning and reducing costs: new models for online learning. Education Review, 38, 28–38.Google Scholar
  26. Weinreich, H., Obendorf, H., Herder, E., & Mayer, M. (2008). Not quite the average: an empirical study of web use. ACM Transactions on the Web (TWEB), 2(1), Article 5), 1–31.CrossRefGoogle Scholar
  27. Wood, W. B., & Tanner, K. D. (2012). The role of the lecturer as tutor: doing what effective tutors do in a large lecture class. CBE Life Sciences Education, 11(1), 3–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Travis R. McDowell
    • 1
    Email author
  • Emmalou T. Schmittzehe
    • 1
  • Amanda J. Duerden
    • 1
  • Dan Cernusca
    • 2
  • Harvest Collier
    • 1
  • Klaus Woelk
    • 1
  1. 1.Chemistry DepartmentMissouri University of Science & TechnologyRollaUSA
  2. 2.School of PharmacyNorth Dakota State UniversityFargoUSA

Personalised recommendations