Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Thermal Dissipation in Two Dimensional Relativistic Fermi Gases with a Relaxation Time Model


The thermal transport properties of a two dimensional Fermi gas are explored, for the full range of temperatures and densities. The heat flux is established by solving the Uehling–Uhlenbeck equation using a relaxation approximation given by Marle’s collisional kernel and considering the temperature and chemical potential gradients as independent thermodynamic forces. It is shown that the corresponding transport coefficients are proportional to each other, which leads to the possibility of defining a generalized thermal force and a single transport coefficient. The behavior of such conductivity with the temperature and chemical potential is analyzed and a discussion on its dependence with the relaxation parameter is also included. The relevance and applications of the results are briefly discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Lyakhov, A.O., Mishchenko, E.G.: Thermal conductivity of a two-dimensional electron gas with Coulomb interaction. Phys. Rev. B 67, 041304(R) (2003)

  2. 2.

    Grether, M., de Llano, M., Solös, M.A.: Anomalous behavior of ideal Fermi gas below two dimensions. Eur. Phys. J. D 25, 287–291 (2003)

  3. 3.

    Schäfer, T.: Shear viscosity and damping of collective modes in a two-dimensional Fermi gas. Phys. Rev. A 85, 033623 (2012)

  4. 4.

    Vogt, E., Feld, M., Fröhlich, B., Pertot, D., Koschorreck, M., Köhl, M.: Scale invariance and viscosity of a two-dimensional Fermi gas. Phys. Rev. Lett. 108, 070404 (2012)

  5. 5.

    Wu, L., Zhang, Y.: Applicability of the Boltzmann equation for a two-dimensional Fermi gas. Phys. Rev. A 85, 045601 (2012)

  6. 6.

    Cheng, C., Kanagara, J., Arakelyan, I., Thomas, J.E.: Fermi gases in the two-dimensional to quasi-two-dimensional crossover. Phys. Rev. A 94, 031606(R) (2016)

  7. 7.

    Dyke, P., Fenech, K., Peppler, T., Lingham, M.G., Hoinka, S., Zhang, W., Peng, S.-G., Mulkerin, B., Hu, H., Liu, X.-J., Vale, C.J.: Criteria for two-dimensional kinematics in an interacting Fermi gas. Phys. Rev. A 93, 011603(R) (2016)

  8. 8.

    Shimizu, S., Bahramy, M.S., Iizuka, T., Ono, S., Miwa, K., Tokura, Y., Iwasa, Y.: Enhanced thermopower in ZnO two-dimensional electron gas. PNAS 113(23), 6438–6443 (2016)

  9. 9.

    Blas, H., Pimentel, B.M., Tomazelli, J.L.: Relativistic quantum thermodynamics of ideal gases in two dimensions. Phys. Rev. E 60, 6164–6167 (1999)

  10. 10.

    Cai, S., Su, G., Chen, J.: Thermostatistic properties of a relativistic Fermi gas. IJMPB 24, 5783–5792 (2010)

  11. 11.

    Sevilla, F.J., Piña, O.: Thermodynamics of the relativistic Fermi gas in \(D\) dimensions. Physica A 482, 585–596 (2017)

  12. 12.

    Chacón-Acosta, G., Dagdug, L., Morales-Técotl, H.A.: Manifestly covariant Jüttner distribution and equipartition theorem. Phys. Rev. E 81, 021126 (2010)

  13. 13.

    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. Academic Press, New York (2007)

  14. 14.

    Mendoza, M., Araújo, N.A.M., Succi, S., Herrmann, H.J.: Transition in the equilibrium distribution function of relativistic particles. Sci. Rep. 2(611), 1–5 (2012)

  15. 15.

    Montakhab, A., Shahsavar, L., Ghodrat, M.: Thermodynamics of a morphological transition in a relativistic gas. Physica A 412, 32–38 (2014)

  16. 16.

    Chacón-Acosta, G.: Equilibrium and non-equilibrium properties of a relativistic gas at the transition temperature. AIP Conf. Proc. 1786, 070016 (2016)

  17. 17.

    Kremer, G.M., Devecchi, F.P.: Thermodynamics and kinetic theory of relativistic gases in 2D cosmological models. Phys. Rev. D 65, 083515 (2002)

  18. 18.

    Ghodrat, M., Montakhab, A.: Molecular dynamics simulation of a relativistic gas: thermostatistical properties. Comput. Phys. Commun. 182, 1909–1913 (2011)

  19. 19.

    Mendoza, M., Herrmann, H.J., Succi, S.: Transition in the equilibrium distribution function of relativistic particles. Sci. Rep. 3, 1052 (2013)

  20. 20.

    Svintsov, D., Vyurkov, V., Ryzhii, V., Otsuji, T.: Hydrodynamic electron transport and nonlinear waves in graphene. Phys. Rev. B 88, 245444 (2013)

  21. 21.

    Svintsov, D.: Hydrodynamic-to-ballistic crossover in Dirac materials. Phys. Rev. B 97, 121405(R) (2018)

  22. 22.

    Lucas, A., Das Sarma, S.: Electronic sound modes and plasmons in hydrodynamic two-dimensional metals. Phys. Rev. B 97, 115449 (2018)

  23. 23.

    Peres, N.M.R.: The transport properties of graphene: an introduction. Rev. Mod. Phys. 82, 2673 (2010)

  24. 24.

    Nika, D.L., Askerov, A.S., Balandin, A.A.: Anomalous size dependence of the thermal conductivity of graphene ribbons. Nano Lett. 12, 3238–3244 (2012)

  25. 25.

    Pototsky, A., Marchesoni, F., Kusmartsev, F.V., Hänggi, P., Savel’ev, S.E.: Relativistic Brownian motion on a graphene chip. Eur. Phys. J. B 85, 356 (2012)

  26. 26.

    Mendoza, M., Karlin, I., Succi, S., Herrmann, H.J.: Ultrarelativistic transport coefficients in two dimensions. J. Stat. Mech. 1302, P02036 (2013)

  27. 27.

    García-Perciante, A.L., Méndez, A.R., Escobar-Aguilar, E.: Heat flux for a relativistic bidimensional gas. J. Stat. Phys. 16, 123–134 (2017)

  28. 28.

    Gabbana, A., Simeone, D., Succi, S., Tripiccione, R.: Relativistic dissipation obeys Chapman-Enskog asymptotics: analytical and numerical evidence as a basis for accurate kinetic simulations. Phys. Rev. E 99, 052126 (2019)

  29. 29.

    Oettinger, D., Mendoza, M., Herrmann, H.J.: Gaussian quadrature and lattice discretization of the Fermi-Dirac distribution for graphene. Phys. Rev. E 88, 013302 (2013)

  30. 30.

    Furtmaier, O., Mendoza, M., Karlin, I., Succi, S., Herrmann, H.J.: Rayleigh-Bénard instability in graphene. Phys. Rev. B 91, 085401 (2015)

  31. 31.

    Coelho, R.C.V., Mendoza, M., Doria, M.M., Herrmann, H.J.: Kelvin-Helmholtz instability of the Dirac fluid of charge carriers on graphene. Phys. Rev. E 96, 184307 (2017)

  32. 32.

    Coelho, R.C.V., Mendoza, M., Doria, M.M., Herrmann, H.J.: Fully dissipative relativistic lattice Boltzmann method in two dimensions. Comput. Fluids 172, 318–331 (2018)

  33. 33.

    Denicol, G.S., Heinz, U., Martinez, M., Noronha, J., Strickland, M.: New exact solution of the relativistic Boltzmann equation and its hydrodynamic limit. Phys. Rev. Lett. 113, 202301 (2014)

  34. 34.

    Bhalerao, R.S., Jaiswal, A., Pal, S., Sreekanth, V.: Relativistic viscous hydrodynamics for heavy-ion collisions: a comparison between the Chapman-Enskog and Grad methods. Phys. Rev. C 89, 054903 (2014)

  35. 35.

    Gabbana, A., Mendoza, M., Succi, S., Tripiccione, R.: Towards a unified lattice kinetic scheme for relativistic hydrodynamics. Phys. Rev. E 95, 053304 (2017)

  36. 36.

    Gabbana, A., Mendoza, M., Succi, S., Tripiccione, R.: Kinetic approach to relativistic dissipation. Phys. Rev. E 96, 023305 (2017)

  37. 37.

    Ambruş, V.E.: Transport coefficients in ultrarelativistic kinetic theory. Phys. Rev. C 97, 024914 (2018)

  38. 38.

    Takamoto, M., Inutsuka, S.: The relativistic kinetic dispersion relation: comparison of the relativistic Bhatnagar-Gross-Krook model and Grad’s 14-moment expansion. Physica A 389, 4580–4603 (2010)

  39. 39.

    Méndez, A.R., García-Perciante, A.L.: Relativistic heat conduction: the kinetic theory approach and comparison with Marle’s model. AIP Conf. Proc. 1312, 63 (2010)

  40. 40.

    Uehling, E.A., Uhlenbeck, G.E.: Transport phenomena in Einstein-Bose and Fermi-Dirac gases. I. Phys. Rev. 43, 552 (1933)

  41. 41.

    Cercignani, C., Medeiros Kremer, G.: The Relativistic Boltzmann Equation: Theory and Applications, 3rd edn. Cambridge University Press, Cambridge (1991)

  42. 42.

    Hakim, R.: Introduction to Relativistic Statistical Mechanics. World Scientific Publishing, Singapore (2011)

  43. 43.

    Shternin, P.S., Yakovlev, D.G.: Electron thermal conductivity owing to collisions between degenerate electrons. Phys. Rev. D 74, 043004 (2006)

  44. 44.

    de Groot, S.R., van Leeuwen, W.A., van del Wert, C.: Relativistic Kinetic Theory. North Holand, Amsterdam (1980)

  45. 45.

    Eckart, C.: The thermodynamics of irreversible processes. III. Relativistic theory of the simple fluid. Phys. Rev. 58, 919 (1940)

  46. 46.

    Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge (1970)

  47. 47.

    Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511 (1954)

  48. 48.

    Marle, C.: Modèle cinétique pour l’ètablissement des lois de la conduction de la chaleur et de la viscositè en thèorie de la relativitè. C. R. Acad. Sci. Paris 260, 6539 (1965)

  49. 49.

    Anderson, J.L., Witting, H.R.: A relativistic relaxation-time for the Boltzmann equation. Physica 74, 466–488 (1974)

  50. 50.

    Anderson, J.L., Witting, H.R.: Relativistic quantum transport coefficients. Physica 74, 489–495 (1974)

  51. 51.

    Kelly, D.C.: Electrical and thermal conductivities of a relativistic degenerate plasma. Astrophys. J. 179, 599–606 (1973)

  52. 52.

    Israel, W.: Relativistic kinetic theory of a simple gas. J. Math. Phys 4, 1163–81 (1963)

  53. 53.

    Aragón-Muñoz, L., Chacón-Acosta, G.: Modified relativistic Jüttner-like distribution functions with \(\eta \)-parameter. J. Phys. Conf. Ser. 1030, 012004 (2018)

  54. 54.

    Olver, F.W.J., et al.: NIST Handbook of Mathematical Functions. NIST-Cambridge University Press, New York (2010)

  55. 55.

    Blair, J.M., Edwards, C.A., Johnson, J.H.: Rational Chebyshev approximations for the Bickley funtions \(Ki_n(x)\). Math. Comput. 32, 876–886 (1978)

  56. 56.

    Cannoni, M.: Relativistic \(\langle \sigma v_{rel} \rangle \) in the calculation of relics abundances: a closer look. Phys. Rev. D 89, 103533 (2014)

  57. 57.

    Stauber, T., Peres, N.M.R., Guinea, F.: Electronic transport in graphene: a semiclassical approach including midgap states. Phys. Rev. B 76, 205423 (2007)

  58. 58.

    Lo Franco, R., Compagno, G.: Quantum entanglement of identical particles by standard information-theoretic notions. Sci. Rep. 6, 20603 (2016)

  59. 59.

    Bouvrie, P.A., Cuestas, E., Roditi, I., Majtey, A.P.: Entanglement between two spatially separated ultracold interacting Fermi gases. Phys. Rev. A 99, 063601 (2019)

  60. 60.

    Ruggiero, P., Calabrese, P., Doyon, B., Dubail, J.: Quantum generalized hydrodynamics. arXiv:1910.00570 (2019)

Download references

Author information

Correspondence to A. R. Méndez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Dr.Abhishek Dhar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Méndez, A.R., García-Perciante, A.L. & Chacón-Acosta, G. Thermal Dissipation in Two Dimensional Relativistic Fermi Gases with a Relaxation Time Model. J Stat Phys 178, 936–953 (2020).

Download citation


  • Bidimensional systems
  • Relativistic quantum gases
  • Kinetic theory
  • Transport phenomena