Advertisement

On Dean–Kawasaki Dynamics with Smooth Drift Potential

  • Vitalii KonarovskyiEmail author
  • Tobias Lehmann
  • Max von Renesse
Article
  • 10 Downloads

Abstract

We consider the Dean–Kawasaki equation with smooth drift interaction potential and show that measure-valued solutions exist only in certain parameter regimes in which case they are given by finite Langevin particle systems with mean field interaction.

Keywords

Dean–Kawasaki equation Langevin dynamics Wasserstein diffusion Itô formula for measure-valued processes 

Mathematics Subject Classification

60H15 60K35 82C22 60G57 82C31 

Notes

References

  1. 1.
    Andres, S., von Renesse, M.-K.: Particle approximation of the Wasserstein diffusion. J. Funct. Anal. 258(11), 3879–3905 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Archer, A.J., Rauscher, M.: Dynamical density functional theory for interacting Brownian particles: stochastic or deterministic? J. Phys. A 37(40), 9325–9333 (2004)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Macroscopic fluctuation theory. Rev. Mod. Phys. 87, 593–636 (2015)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Cornalba, F., Shardlow, T., Zimmer, J.: From weakly interacting particles to a regularised Dean-Kawasaki model. arXiv:1811.06448 (2018)
  5. 5.
    Cornalba, F., Shardlow, T., Zimmer, J.: A regularized Dean-Kawasaki model: derivation and analysis. SIAM J. Math. Anal. 51(2), 1137–1187 (2019)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dawson, D.A.: Measure-valued Markov processes, École d’Été de Probabilités de Saint-Flour XXI—1991. Lecture Notes in Mathematics, vol. 1541, pp. 1–260. Springer, Berlin (1993)Google Scholar
  7. 7.
    de la Torre, J.A., Espanol, P., Donev, A.: Finite element discretization of non-linear diffusion equations with thermal fluctuations. J. Chem. Phys. 142(9), 094115 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    Dean, D.S.: Langevin equation for the density of a system of interacting Langevin processes. J. Phys. A 29(24), L613–L617 (1996)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Delfau, J.-B., Ollivier, H., López, C., Blasius, B., Hernández-Garcí a, E.: Pattern formation with repulsive soft-core interactions: discrete particle dynamics and Dean-Kawasaki equation. Phys. Rev. E 94(4), 042120 (2016)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Donev, A., Fai, T.G., Vanden-Eijnden, E.: A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick’s law. J. Stat. Mech.: Theory Exp. 2014(4), P04004 (2014)CrossRefGoogle Scholar
  11. 11.
    Donev, A., Vanden-Eijnden, E.: Dynamic density functional theory with hydrodynamic interactions and fluctuations. J. Chem. Phys. 140(23), 234115 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    Embacher, P., Dirr, N., Zimmer, J., Reina, C.: Computing diffusivities from particle models out of equilibrium. Proc. R. Soc. A 474(2212), 20170694 (2018)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Fehrman, B., Gess, B.: Well-posedness of nonlinear diffusion equations with nonlinear, conservative noise. Arch. Ration. Mech. Anal. 233(1), 249–322 (2019)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Frusawa, H., Hayakawa, R.: On the controversy over the stochastic density functional equations. J. Phys. A 33(15), L155 (2000)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Giacomin, G., Lebowitz, J.L., Presutti, E.: Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems, Stochastic partial differential equations: six perspectives. Mathematical Surveys and Monographs, vol. 64, pp. 107–152. American Mathematical Society, Providence, RI (1999)zbMATHGoogle Scholar
  16. 16.
    Jack, R.L., Zimmer, J.: Geometrical interpretation of fluctuating hydrodynamics in diffusive systems. J. Phys. A 47(48), 485001 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jacquin, Hugo, Kim, Bongsoo, Kawasaki, Kyozi, van Wijland, Frédéric: Brownian dynamics: From glassy to trivial. Phys. Rev. E 91, 022130 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    Kallenberg, O.: Foundations of Modern Probability, Probability and Its Applications (New York), 2nd edn. Springer, New York (2002)zbMATHGoogle Scholar
  19. 19.
    Kawasaki, K.: Stochastic model of slow dynamics in supercooled liquids and dense colloidal suspensions. Physica A 208(1), 35–64 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    Kim, B., Kawasaki, K., Jacquin, H., van Wijland, F.: Equilibrium dynamics of the Dean-Kawasaki equation: mode-coupling theory and its extension. Phys. Rev. E 89, 012150 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Kipnis, C., Olla, S., Varadhan, S.R.S.: Hydrodynamics and large deviation for simple exclusion processes. Commun. Pure Appl. Math. 42(2), 115–137 (1989)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Konarovskyi, V.: Coalescing-fragmentation Wasserstein dynamics: particle approach. arXiv:1711.03011 (2017)
  23. 23.
    Konarovskyi, V., von Renesse, M.: Reversible coalescing-fragmentating Wasserstein dynamics on the real line. arXiv:1709.02839 (2017)
  24. 24.
    Konarovskyi, V., von Renesse, M.-K.: Modified massive Arratia flow and Wasserstein diffusion. Commun. Pure Appl. Math. 72(4), 764–800 (2019)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Konarovskyi, V., Lehmann, T., von Renesse, M.-K.: Dean-Kawasaki dynamics: ill-posedness vs. triviality. Electron. Commun. Probab 24, 8–9 (2019)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Marconi, U.M.B., Tarazona, P.: Dynamic density functional theory of fluids. J. Chem. Phys. 110(16), 8032–8044 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    Marconi, U.M.B., Tarazona, P.: Dynamic density functional theory of fluids. J. Phys.: Condens. Matter 12(8A), A413 (2000)ADSGoogle Scholar
  28. 28.
    Marx, V.: A new approach for the construction of a Wasserstein diffusion. Electron. J. Probab. 23, 54 (2018)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Rotskoff, G.M., Vanden-Eijnden, E.: Neural networks as interacting particle systems: asymptotic convexity of the loss landscape and universal scaling of the approximation error. Preprint. arXiv:1805.00915 (2018)
  30. 30.
    Sadhu, T., Derrida, B.: Correlations of the density and of the current in non-equilibrium diffusive systems. J. Stat. Mech.: Theory Exp. 2016(11), 113202 (2016)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Schiavo, L.D.: The Dirichlet-Ferguson diffusion on the space of probability measures over a closed Riemannian manifold. arXiv:1811.11598 (2018)
  32. 32.
    Solon, A.P., Cates, M.E., Tailleur, J.: Active Brownian particles and run-and-tumble particles: a comparative study. Eur. Phys. J. Spec. Top. 224(7), 1231–1262 (2015)CrossRefGoogle Scholar
  33. 33.
    Spohn, H.: Large Scale Dynamics of Interacting Particles. Springer, Berlin (1991)CrossRefGoogle Scholar
  34. 34.
    Velenich, A., Chamon, C., Cugliandolo, L.F., Kreimer, D.: On the Brownian gas: a field theory with a Poissonian ground state. J. Phys. A 41(23), 235002 (2008)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Veretennikov, A.Y., Veretennikova, E.V.: On partial derivatives of multivariate Bernstein polynomials. Sib. Adv. Math. 26(4), 294–305 (2016)CrossRefGoogle Scholar
  36. 36.
    von Renesse, M.-K., Sturm, K.-T.: Entropic measure and Wasserstein diffusion. Ann. Probab. 37(3), 1114–1191 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fakultät für Mathematik und InformatikUniversität LeipzigLeipzigGermany

Personalised recommendations