Advertisement

Span Observables: “When is a Foraging Rabbit No Longer Hungry?”

  • Kay Jörg WieseEmail author
Article
  • 4 Downloads

Abstract

Be \(X_t\) a random walk. We study its span S, i.e. the size of the domain visited up to time t. We want to know the probability that S reaches 1 for the first time, as well as the density of the span given t. Analytical results are presented, and checked against numerical simulations. We then generalize this to include drift, and one or two reflecting boundaries. We also derive the joint probability of the maximum and minimum of a process. Our results are based on the diffusion propagator with reflecting or absorbing boundaries, for which a set of useful formulas is derived.

Keywords

Span Random walk Diffusion First passage 

Notes

Acknowledgements

After completion of this work we learned that for the drift-free case the time that the span first reaches one was already calculated in Phys. Rev. E 94, 062131 (2016).

References

  1. 1.
    Feller, W.: Introduction to Probability Theory and Its Applications. Wiley, New York (1950)zbMATHGoogle Scholar
  2. 2.
    Redner, S.: A Guide to First-Passage Problems. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  3. 3.
    Borodin, A.N., Salminen, P.: Handbook of Brownian Motion—Facts and Formulae. Birkhäuser, Boston (2002)CrossRefGoogle Scholar
  4. 4.
    Weiss, G.H., DiMarzio, E.A., Gaylord, R.J.: First passage time densities for random walk spans. J. Stat. Phys. 42, 567–572 (1986)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Palleschi, V., Torquati, M.R.: Mean first-passage time for random-walk span: comparison between theory and numerical experiment. Phys. Rev. A 40, 4685–4689 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    Daniels, H.E.: The probability distribution of the extent of a random chain. Math. Proc. Camb. Philos. Soc. 37, 244–251 (1941)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Feller, W.: The asymptotic distribution of the range of sums of independent random variables. Ann. Math. Stat. 22, 427–432 (1951)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Weiss, G.H., Rubin, R.J.: The theory of ordered spans of unrestricted random walks. J. Stat. Phys. 14, 333–350 (1976)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Annesi, B., Marinari, E., Oshanin, G.: Covariance of the running range of a Brownian trajectory, (2019), arXiv:1902.06963 MathSciNetCrossRefGoogle Scholar
  10. 10.
    Rager, C.L., Bhat, U., Bénichou, O., Redner, S.: The advantage of foraging myopically. J. Stat. Mech. 2018, 073501 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cannon, J.R.: The One-Dimensional Heat Equation. Encyclopedia of Mathematics and Its Applications, vol. 23. Department of Mathematics, MIT, Cambridge (1984)CrossRefGoogle Scholar
  12. 12.
    Bray, A.J., Smith, R.: Survival probability of a diffusing particle constrained by two moving, absorbing boundaries. J. Phys. A 40, F235 (2007). cond-mat/0612563ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Wiese, K.J.: First passage in an interval for fractional Brownian motion. Phys. Rev. E 99 032106, (2018) arXiv:1807.08807
  14. 14.
    Wergen, G., Bogner, M., Krug, J.: Record statistics for biased random walks, with an application to financial data, Phys. Rev. E 83 051109, (2011) arXiv:1103.0893
  15. 15.
    Mirny, L., Slutsky, M., Wunderlich, Z., Tafvizi, A., Leith, J., Kosmrlj, A.: How a protein searches for its site on DNA: the mechanism of facilitated diffusion. J. Phys. A 42, 434013 (2009)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Nourdin, I.: Selected Aspects of Fractional Brownian Motion. Bocconi & Springer Series, New York (2012)CrossRefGoogle Scholar
  17. 17.
    Dieker, A.B.: Simulation of fractional Brownian motion, www.columbia.edu/~ad3217/fbm/thesis.pdf PhD thesis, University of Twente, (2004)
  18. 18.
    Krug, J.: Persistence of non-Markovian processes related to fractional Brownian motion. Markov Process. Relat. Fields 4, 509–516 (1998)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Sadhu, T., Delorme, M., Wiese, K.J.: Generalized arcsine laws for fractional Brownian motion. Phys. Rev. Lett. 120, 040603 (2018).  https://doi.org/10.1103/PhysRevLett.120.040603 ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Salminen, P., Vallois, P.: On maximum increase and decrease of Brownian motion. Ann. Inst. Henri Poincaré PR 43, 655–676 (2007)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris CitéParisFrance

Personalised recommendations