Advertisement

A Mean Field Limit for the Hamiltonian Vlasov System

  • R. A. NeissEmail author
  • P. Pickl
Article
  • 1 Downloads

Abstract

The derivation of effective equations for interacting many body systems has seen a lot of progress in the recent years. While dealing with classical systems, singular potentials are quite challenging (Hauray and Jabin in Annales scientifiques de l’École Normale Supérieure, 2013, Lazarovici and Pickl in Arch Ration Mech Anal 225(3):1201–1231, 2017) comparably strong results are known to hold for quantum systems (Knowles and Pickl in Comm Math Phys 298:101–139, 2010). In this paper, we wish to show how techniques developed for the derivation of effective descriptions of quantum systems can be used for classical ones. While our future goal is to use these ideas to treat singularities in the interaction, the focus here is to present how quantum mechanical techniques can be used for a classical system and we restrict ourselves to regular two-body interaction potentials. In particular we compute a mean field limit for the Hamilton Vlasov system in the sense of (Fröhlich et al. in Comm Math Phys 288:1023–1058, 2009; Neiss in Arch Ration Mech Anal.  https://doi.org/10.1007/s00205-018-1275-8) that arises from classical dynamics. The structure reveals strong analogy to the Bosonic quantum mechanical ensemble of the many-particle Schrödinger equation and the Hartree equation as its mean field limit (Pickl in arXiv:0808.1178v1, 2008).

Keywords

Vlasov Mean field limit Hamiltonian PDE Hamiltonian system Dynamical system 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that there are no conflicts of interest, because this work has not been funded by third parties.

References

  1. 1.
    Boers, N., Pickl, P.: On mean field limits for dynamical systems. J. Stat. Phys. 164, 1–16 (2015)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Braun, W., Hepp, K.: The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles. Commun. Math. Phys. 56(2), 101–113 (1977)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Dobrushin, R.L.: Vlasov equations. Funct. Anal. Appl. 13(2), 115–123 (1979)CrossRefGoogle Scholar
  4. 4.
    Fournier, N., Guillin, A.: On the rate of convergence in wasserstein distance of the empirical measure. Probab. Theory Relat. Fields 162, 1–32 (2014)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Fröhlich, J., Knowles, A., Schwarz, S.: On the mean-field limit of Bosons with Coulomb two-body interaction. Comm. Math. Phys. 288, 1023–1058 (2009)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Hauray, M., Jabin, P.-E.: Particles approximations of Vlasov equations with singular forces: propagation of chaos. To appear in Annales scientifiques de l’École Normale Supérieure (2013)Google Scholar
  7. 7.
    Horst, E.: Global strong solutions of Vlasov’s equation—necessary and sufficient conditions for their existence. Banach Center Publ. 19(1), 143–153 (1987)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Horst, E.: On the asymptotic growth of the solutions of the Vlasov-Poisson system. Math. Methods Appl. Sci. 16, 75–85 (1993)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Kiessling, M.K.-H.: The microscopic foundations of Vlasov theory for jellium-like Newtonian N-body systems. J. Stat. Phys. 155(6), 1299–1328 (2014)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Knowles, A., Pickl, P.: Mean-field dynamics: singular potentials and rate of convergence. Comm. Math. Phys. 298, 101–139 (2010)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Lazarovici, D., Pickl, P.: A mean field limit for the Vlasov-Poisson system. Arch. Ration. Mech. Anal. 225(3), 1201–1231 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lions, P.-L., Perthame, B.: Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent. Math. 105, 415–430 (1991)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Loeper, G.: Uniqueness of the solution to the Vlasov-Poisson system with bounded density. J. Math. Pures Appl. 86, 68–79 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Marsden, J., Weinstein, A.: The Hamiltonian structure of the Maxwell-Vlasov equations. Phys. D 4(3), 394–406 (1981)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Morrison, P.: The Maxwell-Vlasov equations as a continuous Hamiltonian system. Phys. Lett. A 80(5–6), 383–386 (1980)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Neiss, R.: Generalized symplectization of Vlasov dynamics and application to the Vlasov-Poisson system. Arch. Ration. Mech. Anal. (2018).  https://doi.org/10.1007/s00205-018-1275-8 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Neunzert, H.: An introduction to the nonlinear Boltzmann-Vlasov equation. In: Cercignani, C. (ed.) Kinetic Theories and the Boltzmann Equation. Lecture Notes in Mathematics, vol. 1048, pp. 60–110. Springer, Berlin (1984)CrossRefGoogle Scholar
  18. 18.
    Neunzert, H., Wick, J.: Die approximation der Lösung von Integro-Differentialgleichungen durch endliche Punktmengen. In: Ansorge, R., Törnig, W. (eds.) Numerische Behandlung nichtlinearer Integrodifferential - und Differentialgleichungen. Lecture Notes in Mathematics, vol. 395, pp. 275–290. Springer, Berlin (1974)CrossRefGoogle Scholar
  19. 19.
    Pickl, P.: On the time dependent Gross Pitaevskii- and Hartree equation. arXiv:0808.1178v1 (2008)
  20. 20.
    Schaeffer, J.: Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions. Commun. Partial Differ. Equ. 16(8–9), 1313–1335 (1991)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Spohn, H.: Dynamics of Charged Particles and their Radiation Field. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  22. 22.
    Sznitman, A.-S.: Topics in Propagation of Chaos. École d’Été de Probabilités de Saint-Flour XIX—1989. Lecture Notes in Mathematics, vol. 1464, pp. 165–251. Springer, Berlin (1991)Google Scholar
  23. 23.
    Ye, H., Morrison, P., Crawford, J.: Poisson bracket for the Vlasov equation on a symplectic leaf. Phys. Lett. A 156, 96–100 (1991)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität zu KölnKölnGermany
  2. 2.Duke Kunshan UniversityKunshan CityPeople’s Republic of China
  3. 3.Mathematical IstituteLudwig Maximilians UniversityMunichGermany
  4. 4.Bonacci GmbHKölnGermany

Personalised recommendations