Advertisement

The Aw–Rascle Traffic Model: Enskog-Type Kinetic Derivation and Generalisations

  • Giacomo Dimarco
  • Andrea TosinEmail author
Article

Abstract

We study the derivation of second order macroscopic traffic models from kinetic descriptions. In particular, we recover the celebrated Aw–Rascle model as the hydrodynamic limit of an Enskog-type kinetic equation out of a precise characterisation of the microscopic binary interactions among the vehicles. Unlike other derivations available in the literature, our approach unveils the multiscale physics behind the Aw–Rascle model. This further allows us to generalise it to a new class of second order macroscopic models complying with the Aw–Rascle consistency condition, namely the fact that no wave should travel faster than the mean traffic flow.

Keywords

Traffic models Boltzmann and Enskog-type descriptions Macroscopic equations Kinetic derivation Hydrodynamic limit 

Mathematics Subject Classification

35Q20 35Q70 90B20 

Notes

Acknowledgements

This research was partially supported by the Italian Ministry for Education, University and Research (MIUR) through the “Dipartimenti di Eccellenza” Programme (2018-2022), Department of Mathematical Sciences “G. L. Lagrange”, Politecnico di Torino (CUP: E11G18000350001) and through the PRIN 2017 project (No. 2017KKJP4X) “Innovative numerical methods for evolutionary partial differential equations and applications”. This work is also part of the activities of the Starting Grant “Attracting Excellent Professors” funded by “Compagnia di San Paolo” (Torino) and promoted by Politecnico di Torino. G.D., A.T. are respectively members of GNCS (Gruppo Nazionale per il Calcolo Scientifico) and of GNFM (Gruppo Nazionale per la Fisica Matematica) of INdAM (Istituto Nazionale di Alta Matematica), Italy.

References

  1. 1.
    Aw, A., Rascle, M.: Resurrection of “second order” models of traffic flow. SIAM J. Appl. Math. 60(3), 916–938 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51(2), 1035–1042 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    Benedetto, D., Caglioti, E., Golse, F., Pulvirenti, M.: A hydrodynamic model arising in the context of granular media. Comput. Math. Appl. 38(7–8), 121–131 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Benedetto, D., Caglioti, E., Golse, F., Pulvirenti, M.: Hydrodynamic limits of a Vlasov–Fokker–Planck equation for granular media. Commun. Math. Sci. 2(1), 121–136 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Borsche, R., Kimathi, M., Klar, A.: A class of multi-phase traffic theories for microscopic, kinetic and continuum traffic models. Comput. Math. Appl. 64(9), 2939–2953 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Cordier, S., Pareschi, L., Toscani, G.: On a kinetic model for a simple market economy. J. Stat. Phys. 120(1), 253–277 (2005)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Cristiani, E., Saladino, M.C.: Comparing comparisons between vehicular traffic states in microscopic and macroscopic first-order models. Math. Methods Appl. Sci. 42(3), 918–934 (2019)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Daganzo, C.F.: Requiem for second-order fluid approximation of traffic flow. Transp. Res. 29(4), 277–286 (1995)CrossRefGoogle Scholar
  9. 9.
    Di Francesco, M., Fagioli, S., Rosini, M.: Many particle approximation of the Aw–Rascle–Zhang second order model for vehicular traffic. Math. Biosci. Eng. 14(1), 127–141 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Di Francesco, M., Rosini, M.D.: Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit. Arch. Ration. Mech. Anal. 217(3), 831–871 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Dimarco, G., Loubère, R., Narski, J., Rey, T.: An efficient numerical method for solving the Boltzmann equation in multidimensions. J. Comput. Phys. 353, 46–81 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Dimarco, G., Pareschi, L.: Numerical methods for kinetic equations. Acta Numer. 23, 369–520 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Dimarco, G., Pareschi, L., Samaey, G.: Asymptotic-preserving Monte Carlo methods for transport equations in the diffusive limit. SIAM J. Sci. Comput. 40(1), A504–A528 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Düring, B., Toscani, G.: Hydrodynamics from kinetic models of conservative economies. Phys. A 384(2), 493–506 (2007)CrossRefGoogle Scholar
  15. 15.
    Furioli, G., Pulvirenti, A., Terraneo, E., Toscani, G.: Fokker–Planck equations in the modeling of socio-economic phenomena. Math. Models Methods Appl. Sci. 27(1), 115–158 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Gazis, D.C., Herman, R., Rothery, R.W.: Nonlinear follow-the-leader models of traffic flow. Oper. Res. 9, 545–567 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Herman, R., Prigogine, I.: A two-fluid approach to town traffic. Science 204(4389), 148–151 (1979)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Herty, M., Pareschi, L., Seaïd, M.: Enskog-like discrete velocity models for vehicular traffic flow. Netw. Heterog. Media 2(3), 481–496 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Illner, R., Kirchner, C., Pinnau, R.: A derivation of the Aw–Rascle traffic models from Fokker–Planck type kinetic models. Quart. Appl. Math. 67(1), 39–45 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Illner, R., Klar, A., Materne, T.: Vlasov–Fokker–Plank models for multilane traffic flow. Commun. Math. Sci. 1(1), 1–12 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Klar, A., Wegener, R.: Enskog-like kinetic models for vehicular traffic. J. Stat. Phys. 87(1–2), 91–114 (1997)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Klar, A., Wegener, R.: Kinetic derivation of macroscopic anticipation models for vehicular traffic. SIAM J. Appl. Math. 60(5), 1749–1766 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Laurent-Brouty, N., Costesque, G., Goatin, P.: A macroscopic traffic flow model accounting for bounded acceleration. Preprint: hal-02155131 (2019)Google Scholar
  24. 24.
    Lighthill, M.J., Whitham, G.B.: On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. Ser. A 229, 317–345 (1955)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Maurya, A.K., Das, S., Dey, S., Nama, S.: Study on speed and time-headway distributions on two-lane bidirectional road in heterogeneous traffic condition. Transp. Res. Proc. 17, 428–437 (2016)CrossRefGoogle Scholar
  26. 26.
    Naldi, G., Pareschi, L., Toscani, G. (eds.): Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston (2010)zbMATHGoogle Scholar
  27. 27.
    Nanbu, K.: Stochastic solution method of the master equation and the model Boltzmann equation. J. Phys. Soc. Jpn. 52(8), 2654–2658 (1983)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Ni, D., Hsieh, H.K., Jiang, T.: Modeling phase diagrams as stochastic processes with application in vehicular traffic flow. Appl. Math. Model. 53, 106–117 (2018)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Pareschi, L., Russo, G.: An introduction to Monte Carlo method for the Boltzmann equation. ESAIM: Proc. 10, 35–75 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Pareschi, L., Russo, G.: Time relaxed Monte Carlo methods for the Boltzmann equation. SIAM J. Sci. Comput. 23(4), 1253–1273 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Pareschi, L., Toscani, G.: Interacting Multiagent Systems: Kinetic Equations and Monte Carlo methods. Oxford University Press, Oxford (2013)zbMATHGoogle Scholar
  32. 32.
    Payne, H.J.: Models of freeway traffic and control. In: Bekey, G.A. (ed.) Mathematical Models of Public Systems. Simulation Council Proceedings. Simulation Councils, vol. 1, pp. 51–61 (1971)Google Scholar
  33. 33.
    Piccoli, B., Tosin, A.: Vehicular traffic: a review of continuum mathematical models. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, vol. 22, pp. 9727–9749. Springer, New York (2009)CrossRefGoogle Scholar
  34. 34.
    Prigogine, I.: A Boltzmann-like approach to the statistical theory of traffic flow. In: Herman, R. (ed.) Theory of Traffic Flow, pp. 158–164. Elsevier, Amsterdam (1961)Google Scholar
  35. 35.
    Prigogine, I., Andrews, F.C.: A Boltzmann-like approach for traffic flow. Oper. Res. 8(6), 789–797 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Prigogine, I., Herman, R.: Kinetic Theory of Vehicular Traffic. American Elsevier Publishing Co., New York (1971)zbMATHGoogle Scholar
  37. 37.
    Puppo, G., Semplice, M., Tosin, A., Visconti, G.: Fundamental diagrams in traffic flow: the case of heterogeneous kinetic models. Commun. Math. Sci. 14(3), 643–669 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Richards, P.I.: Shock waves on the highway. Oper. Res. 4, 42–51 (1956)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Quarteroni, A. (ed.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer, Berlin (1998)Google Scholar
  40. 40.
    Toscani, G.: Kinetic models of opinion formation. Commun. Math. Sci. 4(3), 481–496 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Tosin, A., Zanella, M.: Kinetic-controlled hydrodynamics for traffic models with driver-assist vehicles. Multiscale Model. Simul. 17(2), 716–749 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Villani, C.: Contribution à l’étude mathématique des équations de Boltzmann et de Landau en théorie cinétique des gaz et des plasmas. PhD thesis, Paris 9 (1998)Google Scholar
  43. 43.
    Villani, C.: On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations. Arch. Ration. Mech. Anal. 143(3), 273–307 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Visconti, G., Herty, M., Puppo, G., Tosin, A.: Multivalued fundamental diagrams of traffic flow in the kinetic Fokker–Planck limit. Multiscale Model. Simul. 15(3), 1267–1293 (2017)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Zhang, H.M.: A non-equilibrium traffic model devoid of gas-like behavior. Transp. Res. Part B 36(3), 275–290 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Computer SciencesUniversity of FerraraFerraraItaly
  2. 2.Department of Mathematical Sciences “G. L. Lagrange”Politecnico di TorinoTurinItaly

Personalised recommendations