Advertisement

Arnold Maps with Noise: Differentiability and Non-monotonicity of the Rotation Number

  • L. Marangio
  • J. Sedro
  • S. GalatoloEmail author
  • A. Di Garbo
  • M. Ghil
Article
  • 8 Downloads

Abstract

Arnold’s standard circle maps are widely used to study the quasi-periodic route to chaos and other phenomena associated with nonlinear dynamics in the presence of two rationally unrelated periodicities. In particular, the El Niño–Southern Oscillation phenomenon is a crucial component of climate variability on interannual time scales and it is dominated by the seasonal cycle, on the one hand, and an intrinsic oscillatory instability with a period of a few years, on the other. The role of meteorological phenomena on much shorter time scales, such as westerly wind bursts, has also been recognized and modeled as additive noise. We consider herein Arnold maps with additive, uniformly distributed noise. When the map’s nonlinear term, scaled by the parameter \(\epsilon \), is sufficiently small, i.e. \(\epsilon < 1\), the map is known to be a diffeomorphism and the rotation number \(\rho _{\omega }\) is a differentiable function of the driving frequency \(\omega \). We concentrate on the rotation number’s behavior as the nonlinearity becomes large, and show rigorously that \(\rho _{\omega }\) is a differentiable function of \(\omega \), even for \(\epsilon \ge 1\), at every point at which the noise-perturbed map is mixing. We also provide a formula for the derivative of the rotation number. The reasoning relies on linear-response theory and a computer-aided proof. In the diffeomorphism case of \( \epsilon <1\), the rotation number \(\rho _{\omega }\) behaves monotonically with respect to \(\omega \). We show, using again a computer-aided proof, that this is not the case when \(\epsilon \ge 1\) and the map is not a diffeomorphism. This lack of monotonicity for large nonlinearity could be of interest in some applications. For instance, when the devil’s staircase \( \rho =\rho (\omega )\) loses its monotonicity, frequency locking to the same periodicity could occur for non-contiguous parameter values that might even lie relatively far apart from each other.

Keywords

Linear response Random dynamical system ENSO Rotation number Arnold map 

Mathematics Subject Classification

37H99 37C30 86A10 65G30 

Notes

Acknowledgements

The rigorous computations presented in Sects. 4.2 and 5 were performed on the supercomputer facilities of the Mésocentre de calcul de Franche-Comté. JS was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant Agreement No. 787304). The present paper is TiPES contribution #4; this project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 820970.

References

  1. 1.
    Antown, F., Dragičević, D., Froyland, G.: Optimal linear responses for Markov chains and stochastically perturbed dynamical systems. J. Stat. Phys. 170(6), 1051–1087 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Arnold, V.I.: Small denominators. I: Mappings of the circumference onto itself. AMS Transl. Ser. 2(46), 213–284 (1965)zbMATHGoogle Scholar
  3. 3.
    Arnold, V.I.: Cardiac arrhythmias and circle mappings. Chaos 1, 20–24 (1991)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Arnold, V.I.: Geometrical Methods in the Theory of Differential Equations. Springer, New York (1983)CrossRefGoogle Scholar
  5. 5.
    Bahsoun, W., Saussol, B.: Linear response in the intermittent family: differentiation in a weighted \(C^{0}\)-norm. Discret. Cont. Dyn. Syst. 36(12), 6657–6668 (2016)zbMATHCrossRefGoogle Scholar
  6. 6.
    Bahsoun, W., Ruziboev, M., Saussol, B.: Linear response for random dynamical systems. arXiv:1710.03706
  7. 7.
    Bahsoun, W., Galatolo, S., Nisoli, I., Niu, X.: A rigorous computational approach to linear response. Nonlinearity 31(3), 1073–1109 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bailey, M.P., Drks, G., Sheldonm, A.C.: Circle maps with gaps: understanding the dynamics of the two-process model for sleep–wake regulation. Eur. J. Appl. Math.  https://doi.org/10.1017/S0956792518000190 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Bak, P.: The devil’s staircase. Phys. Today 39(12), 38–45 (1986)ADSCrossRefGoogle Scholar
  10. 10.
    Bak, P., Bruinsma, R.: One-dimensional Ising model and the complete devil’s staircase. Phys. Rev. Lett. 49, 249–251 (1982)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Baladi, V.: On the susceptibility function of piecewise expanding interval maps. Commun. Math. Phys. 275(3), 839–859 (2007)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Baladi, V., Todd, M.: Linear response for intermittent maps. Commun. Math. Phys. 347(3), 857–874 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Baladi, V., Smania, D.: Linear response formula for piecewise expanding unimodal maps. Nonlinearity 21(4), 677–711 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Baladi, V.: Linear response, or else. In: Proceedings of the International Congress of Mathematicians—Seoul 2014, vol. III, pp. 525–545 (2014)Google Scholar
  15. 15.
    Baladi, V., Benedicks, M., Schnellmann, N.: Whitney–Holder continuity of the SRB measure for transversal families of smooth unimodal maps. Invent. Math. 201, 773–844 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Baladi, V., Kuna, T., Lucarini, V.: Linear and fractional response for the SRB measure of smooth hyperbolic attractors and discontinuous observables. Nonlinearity 30, 1204–1220 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Barnston, A.G., Tippett, M.K., L’Heureux, M., Li, S., DeWitt, D.G.: Skill of real-time seasonal ENSO model predictions during 2002–11: is our capability increasing? Bull. Am. Meteorol. Soc. 93(5), 631–651 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    Batista, A.M., Sandro, E., de Pinto, S., Viana, R.L., Lopes, S.R.: Mode locking in small-world networks of coupled circle maps. Physica A 322, 118–128 (2003)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Bose, C.J., Murray, R.: The exact rate of approximation in Ulam’s method. Discret. Contin. Dyn. Syst. 7, 219–235 (2001)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Chang, P., Wang, B., Li, T., Ji, L.: Interactions between the seasonal cycle and the Southern Oscillation: frequency entrainment and chaos in intermediate coupled ocean-atmosphere model. Geophys. Res. Lett. 21, 2817–2820 (1994)ADSCrossRefGoogle Scholar
  21. 21.
    Chang, P., Ji, L., Li, T., Flügel, M.: Chaotic dynamics versus stochastic processes in El Niño-Southern Oscillation in coupled ocean-atmosphere models. Physica D 98, 301–320 (1996)ADSzbMATHCrossRefGoogle Scholar
  22. 22.
    Chekroun, M.D., Simonnet, E., Ghil, M.: Stochastic climate dynamics: random attractors and time-dependent invariant measures. Physica D 240(21), 1685–1700 (2011)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Dolgopyat, D.: On differentiability of SRB states for partially hyperbolic systems. Invent. Math. 155(2), 389–449 (2004)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Ding, J., Wang, Z.: Parallel computation of invariant measures. Ann. Oper. Res. 103, 283–290 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Eisenman, I., Yu, L., Tziperman, E.: Westerly wind bursts: ENSO tail rather than the dog? J. Climate 18, 5224–5238 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Feigenbaum, M.J., Kadanoff, L.P., Shenker, S.J.: Quasiperiodicity in dissipative systems: a renormalization group analysis. Physica D 5, 370–386 (1982)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Galatolo, S., Giulietti, P.: Linear response for dynamical systems with additive noise. Nonlinearity arXiv:1711.04319
  28. 28.
    Galatolo, S.: Quantitative statistical stability and speed of convergence to equilibrium for partially hyperbolic skew products. J. Éc. Polytech. Math. 5, 377–405 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Galatolo, S., Monge, M., Nisoli, I.: Existence of noise induced order, a computer aided proof. arXiv:1702.07024
  30. 30.
    Galatolo, S., Pollicott, M.: Controlling the statistical properties of expanding maps. Nonlinearity 30, 2737–2751 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Ghil, M.: Hilbert problems for the geosciences in the 21st century. Nonlinear Process. Geophys. 8, 211–222 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    Ghil, M., Allen, M.R., Dettinger, M.D., Ide, K., Kondrashov, D., Mann, M.E., Robertson, A.W., Saunders, A., Tian, Y., Varadi, F., Yiou, P.: Advanced spectral methods for climatic time series. Rev. Geophys.  https://doi.org/10.1029/2000RG000092 (2002)
  33. 33.
    Ghil, M., Chekroun, M.D., Simonnet, E.: Climate dynamics and fluid mechanics: natural variability and related uncertainties. Physica D 237, 2111–2126 (2008).  https://doi.org/10.1016/j.physd.2008.03.036 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Ghil, M., Lucarini, V.: The physics of climate variability and climate change. Rev. Mod. Phys. arXiv:1910.00583
  35. 35.
    Ghil, M., Jiang, N.: Recent forecast skill for the El Niño/Southern Oscillation. Geophys. Res. Lett. 25, 171–174 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    Ghil, M., Robertson, A.W.: Solving problems with GCMs: General circulation models and their role in the climate modeling hierarchy. In: Randall, D. (ed.) General Circulation Model Development: Past, Present and Future, pp. 285–325. Academic Press, San Diego (2000)Google Scholar
  37. 37.
    Ghil, M., Zaliapin, I., Thompson, S.: A delay differential model of ENSO variability: parametric instability and the distribution of extremes. Nonlinear Process. Geophys. 15, 417–433 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Ghil, M.: The wind-driven ocean circulation: applying dynamical systems theory to a climate problem. Discret. Cont. Dyn. Syst. A 37(1), 189–228 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Glass, L.: Cardiac arrhythmias and circle maps—a classical problem. Chaos 1, 13–19 (1991)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Hairer, M., Majda, A.J.: A simple framework to justify linear response theory. Nonlinearity 23, 909–922 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Held, I.M.: The gap between simulation and understanding in climate modeling. Bull. Am. Meteorol. Soc. 86, 1609–1614 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    Keener, J.P., Glass, L.: Global bifurcations of a periodically forced nonlinear oscillator. J. Math. Biol. 21, 175–190 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Kondrashov, D., Chekroun, M.D., Yuan, X., Ghil, M.: Data-adaptive harmonic decomposition and stochastic modeling of Arctic sea ice. In: A. Tsonis (ed.) Nonlinear Advances in Geosciences, pp. 179–206. Springer, New York.  https://doi.org/10.1007/978-3-319-58895-7 (2018)Google Scholar
  44. 44.
    Jiang, S., Jin, F.-F., Ghil, M.: Multiple equilibria, periodic, and aperiodic solutions in a wind-driven, double-gyre, shallow-water model. J. Phys. Oceanogr. 25, 764–786 (1995)ADSCrossRefGoogle Scholar
  45. 45.
    Jin, F.-F., Neelin, J.D., Ghil, M.: El Niño on the Devil’s staircase: annual subharmonic steps to chaos. Science 264, 70–72 (1994)ADSCrossRefGoogle Scholar
  46. 46.
    Jin, F.-F., Neelin, J.D., Ghil, M.: El Niñ o/Southern Oscillation and the annual cycle: subharmonic frequency locking and aperiodicity. Physica D 98, 442–465 (1996)ADSzbMATHCrossRefGoogle Scholar
  47. 47.
    Kondrashov, D., Chekroun, M.D., Ghil, M.: Data-driven non-Markovian closure models. Physica D 297, 33–55 (2015).  https://doi.org/10.1016/j.physd.2014.12.005 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Korepanov, A.: Linear response for intermittent maps with summable and nonsummable decay of correlations. Nonlinearity 29(6), 1735–1754 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Kravtsov, S., Kondrashov, D., Ghil, M.: Empirical model reduction and the modelling hierarchy in climate dynamics and the geosciences. In: Palmer, T., Williams, P. (eds.) Stochastic Physics and Climate Modelling, pp. 35–72. Cambridge Univ. Press, Cambridge (2009)Google Scholar
  50. 50.
    Lasota, A., Mackey, M.C.: Probabilistic Properties of Deterministic Systems. Cambridge University Press, Cambridge (1986)zbMATHGoogle Scholar
  51. 51.
    Liverani, C.: Invariant Measures and Their Properties: A Functional Analytic Point of View. Dynamical Systems. Part II, pp. 185–237. Pubbl. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa (2003)Google Scholar
  52. 52.
    Lucarini, V.: Stochastic perturbations to dynamical systems: a response theory approach. J. Stat. Phys. 146(4), 774–786 (2012)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Latif, M., Barnett, T.P., Flügel, M., Graham, N.E., Xu, J.-S., Zebiak, S.E.: A review of ENSO prediction studies. Clim. Dyn. 9, 167–179 (1994)CrossRefGoogle Scholar
  54. 54.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)ADSzbMATHCrossRefGoogle Scholar
  55. 55.
    Lorenz, E.N.: The mechanics of vacillation. J. Atmos. Sci. 20, 448–464 (1963)ADSCrossRefGoogle Scholar
  56. 56.
    MacKay, R.S.: Management of complex dynamical systems. Nonlinearity 31(2), 52–64 (2018)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Murray, R.: Optimal partition choice for invariant measure approximation for one-dimensional maps. Nonlinearity 17, 1623–1644 (2004)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Neelin, J.D., Battisti, D.S., Hirst, A.C., et al.: ENSO theory. J. Geophys. Res. Oceans 103(C7), 14261–14290 (1998)ADSCrossRefGoogle Scholar
  59. 59.
    Palmer, T., Williams, P. (eds.): Stochastic Physics and Climate Modelling. Cambridge University Press, Cambridge (2009)Google Scholar
  60. 60.
    Penland, C.: A stochastic model of Indo-Pacific sea-surface temperature anomalies. Physica D 98, 534–558 (1996)ADSzbMATHCrossRefGoogle Scholar
  61. 61.
    Pierini, S., Ghil, M., Chekroun, M.D.: Exploring the pullback attractors of a low-order quasigeostrophic ocean model: the deterministic case. J. Climate 29, 4185–4202 (2016)ADSCrossRefGoogle Scholar
  62. 62.
    Philander, S.G.H.: El Niño, La Niña, and the Southern Oscillation. Academic Press, San Diego (1990)Google Scholar
  63. 63.
    Pollicott, M., Vytnova, P.: Linear response and periodic points. Nonlinearity 29(10), 3047–3066 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Ruelle, D.: Differentiation of SRB states. Commun. Math. Phys. 187, 227–241 (1997)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Saunders, A., Ghil, M.: A Boolean delay equation model of ENSO variability. Physica D 160, 54–78 (2001)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Schneider, S.H., Dickinson, R.E.: Climate modeling. Rev. Geophys. Space Phys. 12, 447–493 (1974)ADSCrossRefGoogle Scholar
  67. 67.
    Sedro, J.: A regularity result for fixed points, with applications to linear response. arXiv:1705.04078
  68. 68.
    Timmermann, A., Jin, F-F.: A nonlinear mechanism for decadal El Niño amplitude changes. Geophys. Res. Lett.  https://doi.org/10.1029/2001GL013369 (2002)
  69. 69.
    Tziperman, E., Stone, L., Cane, M., Jarosh, H.: El Niño chaos: Overlapping of resonances between the seasonal cycle and the Pacific ocean-atmosphere oscillator. Science 264, 72–74 (1994)ADSCrossRefGoogle Scholar
  70. 70.
    Tziperman, E., Cane, M.A., Zebiak, S.E.: Irregularity and locking to the seasonal cycle in an ENSO prediction model as explained by the quasi-periodicity route to chaos. J. Atmos. Sci. 50, 293–306 (1995)ADSCrossRefGoogle Scholar
  71. 71.
    Tucker, W.: Validated Numerics A Short Introduction to Rigorous Computations. Princeton Univ. Press, Princeton (2011)zbMATHCrossRefGoogle Scholar
  72. 72.
    Ulam, S.M.: A Collection of Mathematical Problems. Interscience Publisher, New York (1960)zbMATHGoogle Scholar
  73. 73.
    Verbickas, S.: Westerly Wind Bursts in the Tropical Pacific. Weather 53, 282–284 (1998)ADSCrossRefGoogle Scholar
  74. 74.
    Viana, M.: Lectures on Lyapunov Exponents. Cambridge Studies in Advanced Mathematics, vol. 145. Cambridge University Press, Cambridge (2014)zbMATHCrossRefGoogle Scholar
  75. 75.
    Wiggins, S.: Introduction to Applied Dynamical Systems and Chaos. Springer, New York (2003) (see theorem 21.6.16)Google Scholar
  76. 76.
    Zaliapin, I., Ghil, M.: A delay differential model of ENSO variability. Part 2: phase locking, multiple solutions and dynamics of extrema. Nonlinear Process. Geophys. 17, 123–135 (2010)ADSCrossRefGoogle Scholar
  77. 77.
    Zhang, Z.: On the smooth dependence of SRB measures for partially hyperbolic systems. arXiv:1701.05253
  78. 78.
    Zmarrou, H., Homburg, A.J.: Bifurcations of stationary measures of random diffeomorphisms. Ergodic Theory Dynam. Systems 27(5), 1651–1692 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Herman, M.R.: Mesure de Lebesgue et nombre de rotation. In: Geometry and Topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976). Lecture Notes in Math., vol. 597, pp. 271–293. Springer, Berlin (1977)Google Scholar
  80. 80.
    Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995)zbMATHCrossRefGoogle Scholar
  81. 81.
    Matsumoto, S.: Derivatives of the rotation number of one parameter families of circle diffeomorphisms. Kodai Mat. J. 35, 115–125 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    Luque, A., Villanueva, J.: Computation of the derivatives of the rotation number for parametric families of circle diffeomorphisms. Physica D 237, 2599–2615 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Femto-ST Institute, Université de Bourgogne Franche-ComtéDijonFrance
  2. 2.Laboratoire de Mathématiques d’Orsay, Univ. Paris-Sud, CNRS, Université Paris-SaclayOrsayFrance
  3. 3.Laboratoire de Probabilités, Statistique et Modélisation (LPSM), Sorbonne Université, Université de ParisParisFrance
  4. 4.Dipartimento di MatematicaUniversità di PisaPisaItaly
  5. 5.Consiglio Nazionale delle RicercheIstituto di Biofisica Unitá Operativa di PisaPisaItaly
  6. 6.Geosciences Department and Laboratoire de Météorologie Dynamique (CNRS and IPSL), Ecole Normale Supérieure and PSL Research UniversityParisFrance
  7. 7.Department of Atmospheric and Oceanic SciencesUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations