Advertisement

Large Deviations and One-Sided Scaling Limit of Randomized Multicolor Box-Ball System

  • Atsuo Kuniba
  • Hanbaek LyuEmail author
Article
  • 9 Downloads

Abstract

The basic \(\kappa \)-color box-ball (BBS) system is an integrable cellular automaton on one dimensional lattice whose local states take \(\{0,1,\ldots ,\kappa \}\) with 0 regarded as an empty box. The time evolution is defined by a combinatorial rule of quantum group theoretical origin, and the complete set of conserved quantities is given by a \(\kappa \)-tuple of Young diagrams. In the randomized BBS, a probability distribution on \(\{0,1,\ldots ,\kappa \}\) to independently fill the consecutive n sites in the initial state induces a highly nontrivial probability measure on the\(\kappa \)-tuple of those invariant Young diagrams. In a recent work Kuniba et al. (Nucl Phys B 937:240–271, 2018), their large n ‘equilibrium shape’ has been determined in terms of Schur polynomials by a Markov chain method and also by a very different approach of thermodynamic Bethe ansatz (TBA). In this paper, we establish a large deviations principle for the row lengths of the invariant Young diagrams. As a corollary, they are shown to converge almost surely to the equilibrium shape at an exponential rate. We also refine the TBA analysis and obtain the exact scaling form of the vacancy, the row length and the column multiplicity, which exhibit nontrivial factorization in a one-parameter specialization.

Keywords

Solitons Cellular automata Integrable systems Scaling limit Thermodynamic Bethe ansatz 

Notes

Acknowledgements

The authors appreciate valuable conversations with Frank Aurzada, Mikhail Lifshits, Masato Okado, and Makiko Sasada. Atsuo Kuniba is supported by Grants-in-Aid for Scientific Research No. 18H01141 from JSPS.

References

  1. 1.
    Croydon, D.A., Kato, T., Sasada, M., Tsujimoto, S.: Dynamics of the box-ball system with random initial conditions via pitman’s transformation. arXiv:1806.02147 (2018)
  2. 2.
    Dedecker, J., Rio, E.: On the functional central limit theorem for stationary processes. Ann. l’IHP Probab. Stat. 36, 1–34 (2000)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Durrett, R.: Probability: Theory and Examples, 4th edn, Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (2010)Google Scholar
  4. 4.
    Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, vol. 38. Springer, Berlin (2009)zbMATHGoogle Scholar
  5. 5.
    Feller, W.: An Introduction to Probability Theory and Its Applications, vol. I. Wiley, New York (1957)zbMATHGoogle Scholar
  6. 6.
    Feller, W.: An Introduction to Probability and Its Applications, vol. II. Wiley, New York (1971)zbMATHGoogle Scholar
  7. 7.
    Ferrari, P.A., Gabrielli, D.: BBS invariant measures with independent soliton components. arXiv:1812.02437 (2018)
  8. 8.
    Fulmek, M., Kleber, M.: Bijective proofs for Schur function identities which imply Dodgson’s condensation formula and Plücker relations. Electron J Comb 8(1), 16 (2001)zbMATHGoogle Scholar
  9. 9.
    Ferrari, P.A., Nguyen, C., Rolla, L., Wang, M.: Soliton decomposition of the box-ball system. arXiv:1806.02798 (2018)
  10. 10.
    Fulton, W.: Young Tableaux. London Mathematical Society Student Texts, vol. 35. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  11. 11.
    Fukuda, K., Okado, M., Yamada, Y.: Energy functions in box ball systems. Int. J. Mod. Phys. A 15(09), 1379–1392 (2000)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Hatayama, G., Hikami, K., Inoue, R., Kuniba, A., Takagi, T., Tokihiro, T.: The \(A_{M}^{(1)}\) automata related to crystals of symmetric tensors. J. Math. Phys. 42(1), 274–308 (2001)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Hatayama, G., Kuniba, A., Okado, M., Takagi, T., Yamada, Y.: Remarks on Fermionic formula, recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998). Contemp. Math. 248, 243–291 (1998)CrossRefGoogle Scholar
  14. 14.
    Hatayama, G., Kuniba, A., Takagi, T.: Factorization of combinatorial R matrices and associated cellular automata. J. Stat. Phys. 102(3–4), 843–863 (2001)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Hormander, L.: An Introduction to Complex Analysis in Several Variables, vol. 7. Elsevier, Ansterdam (1973)zbMATHGoogle Scholar
  16. 16.
    Inoue, R., Kuniba, A., Takagi, T.: Integrable structure of box-ball systems: crystal, Bethe ansatz, ultradiscretization and tropical geometry. J. Phys. A 45(7), 073001 (2012)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Kashiwara, M.: On crystal bases of the \(q\)-analogue of universal enveloping algebras. Duke Math. J. 63(2), 465–516 (1991)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Kerov, S., Kirillov, A., Reshetikhin, N.: Combinatorics, Bethe ansatz, and representations of the symmetric group. J. Math. Sci. 41(2), 916–924 (1988)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kuniba, A., Lyu, H., Okado, M.: Randomized box-ball systems, limit shape of rigged configurations and thermodynamic Bethe ansatz. Nucl. Phys. B 937, 240–271 (2018)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Kuniba, A., Nakanishi, T., Suzuki, J.: \(T\)-systems and \(Y\)-systems in integrable systems. J. Phys. A 44(10), 103001 (2011)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Kuniba, A., Okado, M., Sakamoto, R., Takagi, T., Yamada, Y.: Crystal interpretation of Kerov–Kirillov–Reshetikhin bijection. Nucl. Phys. B 740(3), 299–327 (2006)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Krantz, S.G., Parks, H.R.: A Primer of Real Analytic Functions. Springer, New York (2002)CrossRefGoogle Scholar
  23. 23.
    Levine, L., Lyu, H., Pike, J.: Double jump phase transition in a random soliton cellular automaton. arXiv:1706.05621 (2017)
  24. 24.
    Lam, T., Pylyavskyy, P., Sakamoto, R.: Rigged configurations and cylindric loop schur functions. arXiv:1410.4455 (2014)
  25. 25.
    Lyu, H., Sivakoff, D.: Persistence of sums of correlated increments and clustering in cellular automata. Stoch. Process. Appl. 129, 1132–1152 (2018)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Meyn, S., Tweedie, R.: Markov Chains and Stochastic Stability. Springer, Berlin (2012)zbMATHGoogle Scholar
  27. 27.
    Nakayashiki, A., Yamada, Y.: Kostka polynomials and energy functions in solvable lattice models. Sel. Math. 3(4), 547–599 (1997)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Okado, M.: \(X=M\) conjecture, Combinatorial aspect of integrable systems. Math. Soc. Jpn. Mem. 17, 43–73 (2007)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Sakamoto, R.: Kirillov–Schilling–Shimozono bijection as energy functions of crystals. Int. Math. Res. Not. 2009(4), 579–614 (2009)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Shimozono, M.: Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent varieties. J. Algebr. Comb. 15(2), 151–187 (2002)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Takahashi, D.: On some soliton systems defined by using boxes and balls. In: 1993 International Symposium on Nonlinear Theory and Its Applications, (Hawaii; 1993), pp. 555–558 (1993)Google Scholar
  32. 32.
    Takahashi, D., Matsukidaira, J.: Box and ball system with a carrier and ultradiscrete modified KdV equation. J. Phys. A 30(21), L733 (1997)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Takahashi, D., Satsuma, J.: A soliton cellular automaton. J. Phys. Soc. Jpn. 59(10), 3514–3519 (1990)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Zeilberger, D.: Andre’s reflection proof generalized to the many-candidate Ballot problem. Discret. Math. 44(3), 325–326 (1983)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of PhysicsUniversity of TokyoTokyoJapan
  2. 2.Department of MathematicsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations