A Lower Bound on the Partition Function for a Strictly Neutral Charge-Symmetric System

  • Jeffrey P. ThompsonEmail author
  • Isaac C. Sanchez


A lower bound on the grand partition function of a classical charge-symmetric system is adapted to the neutral grand canonical ensemble, in which the system is constrained to have zero total charge. This constraint permits us to consider two-body potentials that are only conditionally positive definite.


Neutral grand canonical ensemble Sine-Gordon transformation Coulomb systems 



  1. 1.
    Caillol, J.M., Levesque, D.: Numerical simulations of homogeneous and inhomogeneous ionic systems: an efficient alternative to the Ewald method. J. Chem. Phys. 94(1), 597–607 (1991). ADSCrossRefGoogle Scholar
  2. 2.
    Fochler, O., Vogel, S., Bleicher, M., Greiner, C., Koch-Steinheimer, P., Xu, Z.: Canonical strangeness suppression in microscopic transport models. Phys. Rev. C 74(3), 034902 (2006). ADSCrossRefGoogle Scholar
  3. 3.
    Fontaine, J.R., Martin, P.A.: Equilibrium equations and symmetries of classical Coulomb systems. J. Stat. Phys. 36(1–2), 163–179 (1984). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Fröhlich, J.: Some frontiers in constructive quantum field theory and equilibrium statistical mechanics. In: Dell’Antonio, G., Doplicher, S., Jona-Lasinio, G. (eds.) Mathematical Problems in Theoretical Physics. Lecture Notes in Physics, vol. 80, pp. 37–58. Springer, Berlin (1978). CrossRefGoogle Scholar
  5. 5.
    Fröhlich, J., Spencer, T.: On the statistical mechanics of classical Coulomb and dipole gases. J. Stat. Phys. 24(4), 617–701 (1981). ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Kennedy, T.: A lower bound on the partition function for a classical charge symmetric system. J. Stat. Phys. 28(4), 633–638 (1982). ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.McKetta Department of Chemical EngineeringThe University of Texas at AustinAustinUSA

Personalised recommendations