Statistical Significance of Small Ensembles of Simulations and Detection of the Internal Climate Variability: An Excitable Ocean System Case Study

  • Stefano PieriniEmail author


The correct mathematical approach to climate change requires the knowledge of the time-dependent system’s pullback/snapshot attractor (PBA). Once the governing equations and external forcing are known, the PBA can be estimated by performing an ensemble simulation (ES) of many forward time integrations differing only by their respective initialization; the resulting ensemble mean and spread are usually considered as representative of the forced and internal variability (FV and IV), respectively. In this paper the PBA of an excitable conceptual ocean model subjected to an idealized decadal time-scale aperiodic forcing is determined and is then used to show that the system’s relaxation oscillations contribute substantially to the ensemble mean, despite their intrinsic nature: as a consequence, a clear separation between the FV and IV is impossible in this case study. This provides an example of dynamical behaviour which may be typical of climate ESs under fluctuating aperiodic forcing. The impact of the number of ensemble members N on the statistical significance of the ES is then investigated. The complexity of realistic climate modelling currently imposes N = O(100): how significant is the statistical information derived from such small ESs? To answer this question for the present case study, the knowledge of the PBA is exploited to carry out a systematic comparison between the latter and small ESs with N = 50, also by using novel quantifiers specifically conceived for this purpose. The results reveal a remarkable significance of such ESs beyond the predictability time and may provide useful information for the design of future realistic ESs.


Pullback attractors Ensemble simulations Climate change Internal climate variability Reduced order climate models Excitable systems 



This work was funded by the MOMA (PNRA16_00196) and IPSODES (PNRA18_00199-C) projects of the Italian “Programma Nazionale di Ricerche in Antartide”. Support from the University of Naples Parthenope (Contract No. DSTE315B) is also kindly acknowledged.


  1. 1.
    Ghil, M., Chekroun, M.D., Simonnet, E.: Climate dynamics and fluid mechanics: natural variability and related uncertainties. Physica D 237, 2111–2126 (2008)CrossRefADSMathSciNetzbMATHGoogle Scholar
  2. 2.
    Pierrehumbert, R.T.: Principles of Planetary Climate. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  3. 3.
    Chekroun, M.D., Simonnet, E., Ghil, M.: Stochastic climate dynamics: Random attractors and time-dependent invariant measures. Physica D 240, 1685–1700 (2011)CrossRefADSMathSciNetzbMATHGoogle Scholar
  4. 4.
    Bódai, T., Károlyi, G., Tél, T.: A chaotically driven model climate: extreme events and snapshot attractors. Nonlinear. Process. Geophys. 18, 573–580 (2011)CrossRefADSGoogle Scholar
  5. 5.
    Bódai, T., Károlyi, G., Tél, T.: Fractal snapshot components in chaos induced by strong noise. Phys. Rev. 83E, 046201 (2011)ADSGoogle Scholar
  6. 6.
    Bódai, T., Tél, T.: Annual variability in a conceptual climate model: snapshot attractors, hysteresis in extreme events, and climate sensitivity. Chaos 22, 023110 (2012)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Ghil, M.: The complex physics of climate change and climate sensitivity: a grand unification (Alfred Wegener Medal Lecture). European Geosciences Union General Assembly 2012, Vienna, Austria, European Geosciences Union, EGU2012-14438-1 (2012)Google Scholar
  8. 8.
    Ghil, M.: A mathematical theory of climate sensitivity or, how to deal with both anthropogenic forcing and natural variability? In: Chang, C.-P., Ghil, M., Latif, M., Wallace, J. (eds.) Climate Change: Multidecadal and Beyond, vol. 6, pp. 31–52. World Scientific Publishing Co., Singapore (2015)CrossRefGoogle Scholar
  9. 9.
    Daron, J.D., Stainforth, D.A.: On quantifying the climate of the nonautonomous Lorenz-63 model. Chaos 25, 043103 (2015)CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Drótos, G., Bódai, T., Tél, T.: Probabilistic concepts in a changing climate: a snapshot attractor picture. J. Clim. 28, 3275–3288 (2015)CrossRefADSGoogle Scholar
  11. 11.
    Drótos, G., Bódai, T., Tél, T.: On the importance of the convergence to climate attractors. Eur. Phys. J. Spec. Top. 226, 2031–2038 (2017)CrossRefGoogle Scholar
  12. 12.
    Ragone, F., Lucarini, V., Lunkeit, F.: A new framework for climate sensitivity and prediction: a modelling perspective. Clim. Dyn. 46, 1459–1471 (2016)CrossRefGoogle Scholar
  13. 13.
    Herein, M., Márfy, J., Drótos, G., Tél, T.: Probabilistic concepts in intermediate-complexity climate models: a snapshot attractor picture. J. Clim. 29, 259–272 (2016)CrossRefADSGoogle Scholar
  14. 14.
    Pierini, S., Ghil, M., Chekroun, M.D.: Exploring the pullback attractors of a low-order quasigeostrophic ocean model: the deterministic case. J. Clim. 29, 4185–4202 (2016)CrossRefADSGoogle Scholar
  15. 15.
    Herein, M., Drótos, G., Haszpra, T., Márfy, J., Tél, T.: The theory of parallel climate realizations as a new framework for teleconnection analysis. Sci. Rep. 7, 44529 (2017)CrossRefADSGoogle Scholar
  16. 16.
    Ghil, M.: A century of nonlinearity in the geosciences. Earth Space Sci. 6, 1007–1042 (2019)CrossRefADSGoogle Scholar
  17. 17.
    Stocker, T.F., et al. (eds.): Climate Change 2013 (IPCC): The Physical Science Basis. Cambridge University Press, Cambridge (2013)Google Scholar
  18. 18.
    Drótos, G., Bódai, T., Tél, T.: Quantifying nonergodicity in nonautonomous dissipative dynamical systems: an application to climate change. Phys. Rev. E. 94, 022214 (2016)CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Eckmann, J.-P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617–656 (1985)CrossRefADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    Nicolis, G.: Introduction to Nonlinear Science. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  21. 21.
    Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (2002)CrossRefzbMATHGoogle Scholar
  22. 22.
    Tél, T., Gruiz, M.: Chaotic Dynamics. Cambridge University Press, Cambridge (2006)CrossRefzbMATHGoogle Scholar
  23. 23.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering. CRC Press, Boca Raton (2015)zbMATHGoogle Scholar
  24. 24.
    Dijkstra, H.A., Ghil, M.: Low-frequency variability of the large-scale ocean circulation: a dynamical systems approach. Rev. Geophys. 43, 3002 (2005)CrossRefADSGoogle Scholar
  25. 25.
    Ghil, M.: The wind-driven ocean circulation: applying dynamical systems theory to a climate problem. Discret. Contin. Dyn. Syst. A 37, 189–228 (2017)CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    Pierini, S.: Low-frequency variability, coherence resonance and phase selection in a low-order model of the wind-driven ocean circulation. J. Phys. Oceanogr. 41, 1585–1604 (2011)CrossRefADSGoogle Scholar
  27. 27.
    Pierini, S., Chekroun, M.D., Ghil, M.: The onset of chaos in nonautonomous dissipative dynamical systems: a low-order ocean–model case study. Nonlinear. Process. Geophys. 25, 671–692 (2018)CrossRefADSGoogle Scholar
  28. 28.
    Pikovsky, A.S., Kurths, J.: Coherence resonance in noise-driven excitable systems. Phys. Rev. Lett. 78, 775–778 (1997)CrossRefADSMathSciNetzbMATHGoogle Scholar
  29. 29.
    Pierini, S.: Coherence resonance in a double-gyre model of the Kuroshio Extension. J. Phys. Oceanogr. 40, 238–248 (2010)CrossRefADSGoogle Scholar
  30. 30.
    Crucifix, M.: Oscillators and relaxation phenomena in Pleistocene climate theory. Phil. Trans. R. Soc. A370, 1140–1165 (2012)CrossRefADSGoogle Scholar
  31. 31.
    Van der Pol, B.: On relaxation-oscillations. The London, Edinburgh and Dublin. Philos. Mag. J. Sci. 2, 978–992 (1926)CrossRefGoogle Scholar
  32. 32.
    Bessières, L., Leroux, S., Brankart, J.-M., Molines, J.-M., Moine, M.-P., Bouttier, P.-A., Penduff, T., Terray, L., Barnier, B., Sérazin, G.: Development of a probabilistic ocean modelling system based on NEMO 3.5: application at eddying resolution. Geosci. Model Dev. 10, 1091–1106 (2017)CrossRefADSGoogle Scholar
  33. 33.
    Maher, N., Milinski, S., Suarez-Gutierrez, L., Botzet, M., Dobrynin, M., Kornblueh, L., Kröger, J., Takano, Y., Ghosh, R., Hedemann, C., Li, C., Li, H., Manzini, E., Notz, D., Putrasahan, D., Boysen, L., Claussen, M., Ilyina, T., Olonscheck, D., Raddatz, T., Stevens, B., Marotzke, J.: The Max Planck Institute grand ensemble: enabling the exploration of climate system variability. J. Adv. Mod. Earth Syst. (2019). CrossRefGoogle Scholar
  34. 34.
    Pierini, S.: A Kuroshio Extension system model study: decadal chaotic self-sustained oscillations. J. Phys. Oceanogr. 36, 1605–1625 (2006)CrossRefADSGoogle Scholar
  35. 35.
    Pierini, S.: On the crucial role of basin geometry in double-gyre models of the Kuroshio Extension. J. Phys. Oceanogr. 38, 1327–1333 (2008)CrossRefADSGoogle Scholar
  36. 36.
    Pierini, S., Dijkstra, H.A.: Low-frequency variability of the Kuroshio Extension. Nonlinear. Process. Geophys. 16, 665–675 (2009)CrossRefADSGoogle Scholar
  37. 37.
    Pierini, S.: Stochastic tipping points in climate dynamics. Phys. Rev. E 85, 027101 (2012)CrossRefADSGoogle Scholar
  38. 38.
    Pierini, S.: Ensemble simulations and pullback attractors of a periodically forced double-gyre system. J. Phys. Oceanogr. 44, 3245–3254 (2014)CrossRefADSGoogle Scholar
  39. 39.
    Vannitsem, S., De Cruz, L.: A 24-variable low-order coupled ocean–atmosphere model: OA-QG-WS v2. Geosci. Model Dev. 7, 649–662 (2014)CrossRefADSGoogle Scholar
  40. 40.
    De Cruz, L., Schubert, S., Demaeyer, J., Lucarini, V., Vannitsem, S.: Exploring the Lyapunov instability properties of high-dimensional atmospheric and climate models. Nonlinear. Process. Geophys. 25, 387–412 (2018)CrossRefADSGoogle Scholar
  41. 41.
    Vallis, G.K.: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, Cambridge (2006)CrossRefzbMATHGoogle Scholar
  42. 42.
    Arnold, L.: Random Dynamical Systems. Springer, New York (1998)CrossRefzbMATHGoogle Scholar
  43. 43.
    Rasmussen, M.: Attractivity and Bifurcation for Nonautonomous Dynamical Systems. Springer, New York (2007)zbMATHGoogle Scholar
  44. 44.
    Bódai, T., Károlyi, G., Tél, T.: Driving a conceptual model climate by different processes: Snapshot attractors and extreme events. Phys. Rev. E 87, 022822 (2013)CrossRefADSGoogle Scholar
  45. 45.
    Sérazin, G., Jaymond, A., Leroux, S., Penduff, T., Bessières, L., Llovel, W., Barnier, B., Molines, J.-M., Terray, L.: A global probabilistic study of the ocean heat content low-frequency variability: atmospheric forcing versus oceanic chaos. Geophys. Res. Lett. 44, 5580–5589 (2017)CrossRefADSGoogle Scholar
  46. 46.
    Penduff, T., Barnier, B., Terray, L., Sérazin, G., Gregorio, S., Brankart, J.-M., Moine, M.-P., Molines, J.-M., Brasseur, P.: Ensembles of eddying ocean simulations for climate. CLIVAR Exchanges No. 65, Vol. 19, No. 2 (2014)Google Scholar
  47. 47.
    Leroux, S., Penduff, T., Bessières, L., Molines, J.-M., Brankart, J.-M., Sérazin, G., Barnier, B., Terray, L.: Intrinsic and atmospherically forced variability of the AMOC: insights from a large-ensemble ocean hindcast. J. Clim. 31, 1183–1203 (2018)CrossRefADSGoogle Scholar
  48. 48.
    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge Nonlinear Science Series 12. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  49. 49.
    Shannon, C.E.: The mathematical theory of communication. Bell Syst. Technol. J. 27, 379–423 (1948)CrossRefMathSciNetzbMATHGoogle Scholar
  50. 50.
    Vissio, G., Lucarini, V.: Evaluating a stochastic parametrization for a fast–slow system using the Wasserstein distance. Nonlinear. Process. Geophys. 25, 413–427 (2018)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Scienze e TecnologieUniversità di Napoli ParthenopeNaplesItaly
  2. 2.CoNISMaRomeItaly

Personalised recommendations