Advertisement

Bohmian Trajectories for Hamiltonians with Interior–Boundary Conditions

  • Detlef Dürr
  • Sheldon Goldstein
  • Stefan Teufel
  • Roderich TumulkaEmail author
  • Nino Zanghì
Article
  • 6 Downloads

Abstract

Recently, there has been progress in developing interior–boundary conditions (IBCs) as a technique of avoiding the problem of ultraviolet divergence in non-relativistic quantum field theories while treating space as a continuum and electrons as point particles. An IBC can be expressed in the particle-position representation of a Fock vector \(\psi \) as a condition on the values of \(\psi \) on the set of collision configurations, and the corresponding Hamiltonian is defined on a domain of vectors satisfying this condition. We describe here how Bohmian mechanics can be extended to this type of Hamiltonian. In fact, part of the development of IBCs was inspired by the Bohmian picture. Particle creation and annihilation correspond to jumps in configuration space; the annihilation is deterministic and occurs when two particles (of the appropriate species) meet, whereas the creation is stochastic and occurs at a rate dictated by the demand for the equivariance of the \(|\psi |^2\) distribution, time reversal symmetry, and the Markov property. The process is closely related to processes known as Bell-type quantum field theories.

Keywords

Regularization of quantum field theory Particle creation and annihilation Bohmian mechanics Bell-type quantum field theory Schrödinger operator with boundary condition Galilean transformation 

Notes

Acknowledgements

We thank Stefan Keppeler, Jonas Lampart, Ruadhan O’Flanagan, and Julian Schmidt for helpful discussions.

References

  1. 1.
    Allori, V., Goldstein, S., Tumulka, R., Zanghì, N.: On the common structure of Bohmian mechanics and the Ghirardi–Rimini–Weber theory. Br. J. Philos. Sci. 59, 353–389 (2008). arXiv:quant-ph/0603027 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1989)CrossRefGoogle Scholar
  3. 3.
    Bargmann, V.: On unitary ray representations of continuous groups. Ann. Math. 59, 1–46 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bell, J.S: Beables for quantum field theory. Phys. Rep. 137, 49–54 (1986). Reprinted on p. 173 in J. S. Bell: Speakable and unspeakable in quantum mechanics. Cambridge University Press (1987). Also reprinted on p. 227 in F. D. Peat and B. J. Hiley (eds): Quantum Implications: Essays in Honour of David Bohm. London: Routledge (1987). Also reprinted as chap. 17 in M. Bell, K. Gottfried, and M. Veltman (eds): John S. Bell on the Foundations of Quantum Mechanics. World Scientific Publishing (2001)Google Scholar
  5. 5.
    Berndl, K., Dürr, D., Goldstein, S., Peruzzi, G., Zanghì, N.: On the global existence of Bohmian mechanics. Commun. Math. Phys. 173, 647–673 (1995). arXiv:quant-ph/9503013 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bethe, H., Peierls, R.: Quantum theory of the Diplon. Proc. R. Soc. Lond. A 148, 146–156 (1935)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables I and II. Phys. Rev. 85, 166–193 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bohm, D.: Comments on an article of Takabayasi concerning the formulation of quantum mechanics with classical pictures. Prog. Theor. Phys. 9, 273–287 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Colin, S.: The continuum limit of the Bell model. arXiv:quant-ph/0301119
  10. 10.
    Colin, S.: A deterministic Bell model. Phys. Lett. A 317, 349–358 (2003). arXiv:quant-ph/0310055 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Colin, S.: Beables for quantum electrodynamics. Ann. Fond. Louis de Broglie 29(1–2), 273–296 (2004). arXiv:quant-ph/0310056 MathSciNetzbMATHGoogle Scholar
  12. 12.
    Colin, S., Durt, T., Tumulka, R.: On superselection rules in Bohm–Bell theories. J. Phys. A 39, 15403–15419 (2006). arXiv:quant-ph/0509177 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Colin, S., Struyve, W.: A Dirac sea pilot-wave model for quantum field theory. J. Phys. A 40, 7309–7342 (2007). arXiv:quant-ph/0701085 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Deckert, D.-A., Esfeld, M., Oldofredi, A.: A persistent particle ontology for QFT in terms of the Dirac sea. Br. J. Philos. Sci. (2017) arXiv:1608.06141
  15. 15.
    de Dormale, B.M.: On the local Gali–Lee model. Rep. Math. Phys. 10, 325–348 (1976)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Dereziński, J.: Van Hove Hamiltonians–exactly solvable models of the infrared and ultraviolet problem. Ann. Henri Poincaré 4, 713–738 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Dürr, D., Goldstein, S., Taylor, J., Tumulka, R., Zanghì, N.: Topological factors derived from bohmian mechanics. Ann. Henri Poincaré 7, 791–807 (2006). Reprinted in [24]. arXiv:quant-ph/0601076
  18. 18.
    Dürr, D., Goldstein, S., Taylor, J., Tumulka, R., Zanghì, N.: Quantum mechanics in multiply-connected spaces. J. Phys. A 40, 2997–3031 (2007). arXiv:quant-ph/0506173 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Dürr, D., Goldstein, S., Tumulka, R., Zanghì, N.: Trajectories and particle creation and annihilation in quantum field theory. J. Phys. A 36, 4143–4149 (2003). arXiv:quant-ph/0208072 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Dürr, D., Goldstein, S., Tumulka, R., Zanghì, N.: Bohmian mechanics and quantum field theory. Phys. Rev. Lett. 93, 090402 (2004). Reprinted in [24]. arXiv:quant-ph/0303156
  21. 21.
    Dürr, D., Goldstein, S., Tumulka, R., Zanghì, N.: Quantum Hamiltonians and stochastic jumps. Commun. Math. Phys. 254, 129–166 (2005). arXiv:quant-ph/0303056 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Dürr, D., Goldstein, S., Tumulka, R., Zanghì, N.: Bell-type quantum field theories. J. Phys. A 38, R1–R43 (2005). arXiv:quant-ph/0407116 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Dürr, D., Goldstein, S., Zanghì, N.: quantum equilibrium and the origin of absolute uncertainty. J. Stat. Phys. 67, 843–907 (1992) Reprinted in [24]. arXiv:quant-ph/0308039
  24. 24.
    Dürr, D., Goldstein, S., Zanghì, N.: Quantum Physics Without Quantum Philosophy. Springer-Verlag, Berlin (2013)CrossRefzbMATHGoogle Scholar
  25. 25.
    Dürr, D., Teufel, S.: Bohmian Mechanics. Springer-Verlag, Heidelberg (2009)zbMATHGoogle Scholar
  26. 26.
    Galvan, B.: Quantum field theory without divergence: the method of the interaction operators. Preprint (2016) arXiv:1607.03876
  27. 27.
    Georgii, H.-O., Tumulka, R.: Global existence of Bell’s time-inhomogeneous jump process for lattice quantum field theory. Markov Process. Relat. Fields 11, 1–18 (2005). arXiv:math.PR/0312294 MathSciNetzbMATHGoogle Scholar
  28. 28.
    Georgii, H.-O., Tumulka, R.: Some jump processes in quantum field theory. In: Deuschel, J.-D., Greven, A. (eds.) Interacting Stochastic Systems, pp. 55–73. Springer-Verlag, Berlin (2004). arXiv:math.PR/0312326
  29. 29.
    Goldstein, S.: Bohmian mechanics. In: E. N. Zalta (ed.) Stanford Encyclopedia of Philosophy, published online by Stanford University (2001) http://plato.stanford.edu/entries/qm-bohm
  30. 30.
    Goldstein, S., Taylor, J., Tumulka, R., Zanghì, N.: Are all particles identical? J. Phys. A 38, 1567–1576 (2005). arXiv:quant-ph/0405039 MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Goldstein, S., Taylor, J., Tumulka, R., Zanghì, N.: Fermionic wave functions on unordered configurations. arXiv:1403.3705
  32. 32.
    Keppeler, S., Sieber, M.: Particle creation and annihilation at interior boundaries: one-dimensional models. J. Phys. A 49, 125204 (2016). arXiv:1511.03071 MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Kostrykin, V., Schrader, R.: Kirchhoff’s rule for quantum wires. J. Phys. A 32, 595–630 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Kuchment, P.: Quantum graphs I. Some basic structures. Waves Random Media 14, S107–S128 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Lampart, J.: A nonrelativistic quantum field theory with point interactions in three dimensions. Preprint (2018) arXiv:1804.08295
  36. 36.
    Lampart, J.: personal communication (3/30/2018)Google Scholar
  37. 37.
    Lampart, J., Schmidt, J.: On Nelson-type Hamiltonians and abstract boundary conditions. Commun. Math. Phys. 376, 629–663 (2019). arXiv:1803.00872 MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Lampart, J., Schmidt, J., Teufel, S., Tumulka, R.: Particle creation at a point source by means of interior-boundary conditions. Math. Phys. Anal. Geom. 21, 12 (2018). arXiv:1703.04476 MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Landau, L., Peierls, R.: Quantenelektrodynamik im Konfigurationsraum. Z. Phys. 62, 188–200 (1930). English translation: Quantum electrodynamics in configuration space. In: Dalitz, R.H., Peierls, R. (eds.) Selected Scientific Papers of Sir Rudolf Peierls With Commentary, pp. 71–82. World Scientific, Singapore (1997)Google Scholar
  40. 40.
    Lee, T.D.: Some special examples in renormalizable field theory. Phys. Rev. 95, 1329–1334 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Lévy-Leblond, J.-M.: Galilean quantum field theories and a ghostless Lee model. Commun. Math. Phys. 4, 157–176 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Lienert, M., Nickel, L.: Multi-time formulation of particle creation and annihilation via interior-boundary conditions. Preprint (2018) arXiv:1808.04192
  43. 43.
    Moshinsky, M.: Boundary conditions for the description of nuclear reactions. Phys. Rev. 81, 347–352 (1951)CrossRefzbMATHGoogle Scholar
  44. 44.
    Moshinsky, M.: Boundary conditions and time-dependent states. Phys. Rev. 84, 525–532 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Moshinsky, M.: Quantum mechanics in fock space. Phys. Rev. 84, 533 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Moshinsky, M., Laurrabaquio, G.L.: Relativistic interactions by means of boundary conditions: the Breit-Wigner formula. J. Math. Phys. 32, 3519–3528 (1991)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Nelson, E.: Interaction of nonrelativistic particles with a quantized scalar field. J. Math. Phys. 5, 1190–1197 (1964)MathSciNetCrossRefGoogle Scholar
  48. 48.
    O’Flanagan, R.: personal communication (5/23/2003)Google Scholar
  49. 49.
    Schmidt, J.: On a direct description of pseudorelativistic Nelson Hamiltonians. Preprint (2018) arXiv:1810.03313
  50. 50.
    Schmidt, J., Tumulka, R.: Complex charges, time reversal asymmetry, and interior-boundary conditions in quantum field theory. J. Phys. A 52, 115301 (2019). arXiv:1810.02173 CrossRefGoogle Scholar
  51. 51.
    Schmidt, J., Teufel, S., Tumulka, R.: Interior-boundary conditions for many-body dirac operators and codimension-1 boundaries. J. Phys. A (2019) arXiv:1811.02947
  52. 52.
    Schrader, R.: On the existence of a local Hamiltonian in the Galilean invariant Lee model. Commun. Math. Phys. 10, 155–178 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Schweber, S.: An Introduction to Relativistic Quantum Field Theory. Harper and Row, New York (1961)zbMATHGoogle Scholar
  54. 54.
    Struyve, W.: Pilot-wave theory and quantum fields. Rep. Prog. Phys. 73, 106001 (2010). arXiv:0707.3685 MathSciNetCrossRefGoogle Scholar
  55. 55.
    Struyve, W., Valentini, A.: De Broglie–Bohm guidance equations for arbitrary Hamiltonians. J. Phys. A 42, 035301 (2009). arXiv:0808.0290 MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Struyve, W., Westman, H.: A minimalist pilot-wave model for quantum electrodynamics. Proc. R. Soc. A 463, 3115–3129 (2007). arXiv:0707.3487 MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Sudbery, A.: Objective interpretations of quantum mechanics and the possibility of a deterministic limit. J. Phys. A 20, 1743–1750 (1987)CrossRefGoogle Scholar
  58. 58.
    Teufel, S., Tumulka, R.: Simple proof for global existence of Bohmian trajectories. Commun. Math. Phys. 258, 349–365 (2005). arXiv:math-ph/0406030 MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Teufel, S., Tumulka, R.: New type of Hamiltonians without ultraviolet divergence for quantum field theories. Preprint (2015) arXiv:1505.04847
  60. 60.
    Teufel, S., Tumulka, R.: Avoiding ultraviolet divergence by means of interior–boundary conditions. In: Finster, F. Kleiner, J., Röken, C., Tolksdorf, J. (eds.) Quantum Mathematical Physics—A Bridge between Mathematics and Physics, pp. 293–311. Birkhäuser, Basel (2016) arXiv:abs/1506.00497
  61. 61.
    Thomas, L.E.: Multiparticle Schrödinger Hamiltonians with point interactions. Phys. Rev. D 30, 1233–1237 (1984)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Tumulka, R.: The analogue of Bohm–Bell processes on a graph. Phys. Lett. A 348(3–6), 126–134 (2005). arXiv:quant-ph/0508109 MathSciNetzbMATHGoogle Scholar
  63. 63.
    Tumulka, R.: Bohmian mechanics. In: Knox, E., Wilson, A. (eds.) The Routledge Companion to the Philosophy of Physics. Routledge, London (2020) arXiv:1704.08017
  64. 64.
    Tumulka, R.: On Bohmian mechanics, particle creation, and relativistic space-time: happy 100th birthday, David Bohm!. Entropy 20(6), 462 (2018). arXiv:1804.08853 CrossRefGoogle Scholar
  65. 65.
    Tumulka, R.: Interior-boundary conditions for Schrödinger operators on codimension-1 boundaries. Preprint (2018) arXiv:1808.06262
  66. 66.
    van Hove, L.: Les difficultés de divergences pour un modèle particulier de champ quantifié. Physica 18, 145–159 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Vink, J.C.: Quantum mechanics in terms of discrete beables. Phys. Rev. A 48, 1808–1818 (1993)CrossRefGoogle Scholar
  68. 68.
    Vink, J.C.: Particle trajectories for quantum field theory. Found. Phys. 48, 209–236 (2018). arXiv:1711.09240 MathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    Yafaev, D.R.: On a zero-range interaction of a quantum particle with the vacuum. J. Phys. A 25, 963–978 (1992)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mathematisches InstitutLudwig-Maximilians-UniversitätMünchenGermany
  2. 2.Departments of Mathematics, Physics and PhilosophyRutgers UniversityPiscatawayUSA
  3. 3.Mathematisches InstitutEberhard-Karls-UniversitätTübingenGermany
  4. 4.Dipartimento di Fisica dell’Università di Genova and INFN sezione di GenovaGenovaItaly

Personalised recommendations