Advertisement

Journal of Statistical Physics

, Volume 176, Issue 2, pp 492–504 | Cite as

Markovian and Non-Markovian Dynamics in the One-Dimensional Transverse-Field XY Model

  • Z. SaghafiEmail author
  • S. Mahdavifar
  • E. Hosseini Lapasar
Article
  • 32 Downloads

Abstract

We consider an anisotropic spin-1/2 XY Heisenberg chain in the presence of a transverse magnetic field. Selecting the nearest neighbor pair spins as an open quantum system, the rest of the chain plays the role of the structured environment. In fact, the aforementioned system is used as a quantum probe signifying nontrivial features of the environment with which is interacting. We use a general measure that is based on the trace distance for the degree of non-Markovian behavior in open quantum systems. The witness of non-Markovianity takes on nonzero values whenever there is a flow of information from the environment back to the open system. We have shown that the dynamics of the system with isotropic Heisenberg interaction is Markovian. A dynamical transition into the non-Markovian regime is observed as soon as the anisotropy, \(\gamma \), is applied. At the Ising value of the anisotropy \(\gamma =1.0\), all the information flows back from the environment to the system. The additional dynamical transition from the non-Markovian to the Markovian is obtained by applying the transverse magnetic field. In addition, we have focused on the time evolution of the Loschmidt-echo return rate function. It is found that a non-analyticity can be seen in the time evolution of the Loschmidt-echo return rate function exactly at the critical points where a dynamical transition from the Markovian to the non-Markovian occurs.

Keywords

Dynamical phase transition XY model Transverse magnetic field 

Notes

Acknowledgements

The authors wish to thank R. Jafari for useful comments and discussions.

References

  1. 1.
    Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)zbMATHGoogle Scholar
  2. 2.
    Breuer, H.P., Laine, E.M., Piilo, J., Vacchini, B.: Colloquium: Non-Markovian dynamics in open quantum systems. Rev. Mod. Phys. 88(2), 021002 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    Rivas, A., Huelga, S.F., Plenio, M.B.: Quantum non-Markovianity: characterization, quantification and detection. Rep. Prog. Phys. 77(9), 094001 (2014)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Santos, M.F., Milman, P., Davidovich, L., Zagury, N.: Direct measurement of finite-time disentanglement induced by a reservoir. Phys. Rev. A 73(4), 040305 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    Bellomo, B., Franco, R.L., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99(16), 160502 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Bellomo, B., Franco, R.L., Compagno, G.: Entanglement dynamics of two independent qubits in environments with and without memory. Phys. Rev. A 77(3), 032342 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Piilo, J., Maniscalco, S., Härkönen, K., Suominen, K.A.: Non-Markovian quantum jumps. Phys. Rev. Lett. 100(18), 180402 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Piilo, J., Härkönen, K., Maniscalco, S., Suominen, K.A.: Open system dynamics with non-Markovian quantum jumps. Phys. Rev. A 79(6), 062112 (2009)ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Apollaro, T.J., Di Franco, C., Plastina, F., Paternostro, M.: Memory-keeping effects and forgetfulness in the dynamics of a qubit coupled to a spin chain. Phys. Rev. A 83(3), 032103 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    Madsen, K.H., Ates, S., Lund-Hansen, T., Löffler, A., Reitzenstein, S., Forchel, A., Lodahl, P.: Observation of non-Markovian dynamics of a single quantum dot in a micropillar cavity. Phys. Rev. Lett. 106(23), 233601 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Liu, B.H., Li, L., Huang, Y.F., Li, C.F., Guo, G.C., Laine, E.M., Breuer, H.P., Piilo, J.: Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nat. Phys. 7(12), 931–934 (2011)CrossRefGoogle Scholar
  12. 12.
    Franco, R.L., Bellomo, B., Andersson, E., Compagno, G.: Revival of quantum correlations without system-environment back-action. Phys. Rev. A 85(3), 032318 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    Huelga, S.F., Rivas, A., Plenio, M.B.: Non-Markovianity-assisted steady state entanglement. Phys. Rev. Lett. 108(16), 160402 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Barnes, E., Cywiński, Ł., Sarma, S.D.: Nonperturbative master equation solution of central spin dephasing dynamics. Phys. Rev. Lett. 109(14), 140403 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Haikka, P., Goold, J., McEndoo, S., Plastina, F., Maniscalco, S.: Non-Markovianity, Loschmidt echo, and criticality: a unified picture. Phys. Rev. A 85(6), 060101 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Laine, E.M., Breuer, H.P., Piilo, J., Li, C.F., Guo, G.C.: Nonlocal memory effects in the dynamics of open quantum systems. Phys. Rev. Lett. 108(21), 210402 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Franco, R.L., Bellomo, B., Maniscalco, S., Compagno, G.: Dynamics of quantum correlations in two-qubit systems within non-Markovian environments. Int. J. Mod. Phys. 27(01n03), 1345053 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Xu, J.S., Sun, K., Li, C.F., Xu, X.Y., Guo, G.C., Andersson, E., Franco, R.L., Compagno, G.: Experimental recovery of quantum correlations in absence of system-environment back-action. Nat. Commun. 4(1), 2851 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Lorenzo, S., Plastina, F., Paternostro, M.: Tuning non-Markovianity by spin-dynamics control. Phys. Rev. A 87(2), 022317 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Orieux, A., d’Arrigo, A., Ferranti, G., Franco, R.L., Benenti, G., Paladino, E., Falci, G., Sciarrino, F., Mataloni, P.: Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics. Sci. Rep. 5(1), 8575 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Z̆nidaric̆, M., Pineda, C., Garcia-Mata, I.: Non-Markovian behavior of small and large complex quantum systems. Phys. Rev. Lett. 107(8), 080404 (2011)CrossRefGoogle Scholar
  22. 22.
    Lorenzo, S., Plastina, F., Paternostro, M.: Role of environmental correlations in the non-Markovian dynamics of a spin system. Phys. Rev. A 84(3), 032124 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Mahmoudi, M., Mahdavifar, S., Zadeh, T.M.A., Soltani, M.R.: Non-Markovian dynamics in the extended cluster spin-1/2 XX chain. Phys. Rev. A 95(1), 012336 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Breuer, H.P., Laine, E.M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103(21), 210401 (2009)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Breuer, H.P.: Foundations and measures of quantum non-Markovianity. J. Phys. B 45(15), 154001 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    Fetter, A.L., Walecka, J.D.: Quantum Theory of Many Particle System, vol. 34. McGraw-Hill Book Company, New York (1971)Google Scholar
  27. 27.
    Son, W., Amico, L., Fazio, R., Hamma, A., Pascazio, S., Vedral, V.: Quantum phase transition between cluster and antiferromagnetic states. EPL (Europhys. Lett.) 95(5), 50001 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    Heyl, M., Polkovnikov, A., Kehrein, S.: Dynamical quantum phase transitions in the transverse-field Ising model. Phys. Rev. Lett. 110(13), 135704 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Heyl, M.: Dynamical quantum phase transitions: a review. Rep. Prog. Phys. 81(5), 054001 (2018)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of GuilanRashtIran
  2. 2.Department of Chemistry and Molecular Material Science, Graduate School of ScienceOsaka City UniversityOsakaJapan

Personalised recommendations