Advertisement

Log-Correlated Large-Deviation Statistics Governing Huygens Fronts in Turbulence

  • Jackson R. Mayo
  • Alan R. KersteinEmail author
Article

Abstract

Analyses have disagreed on whether the velocity \(u_T\) of bulk advancement of a Huygens front in turbulence vanishes or remains finite in the limit of vanishing local front propagation speed \(u_0\). Here, a connection to the large-deviation statistics of log-correlated random processes enables a definitive determination of the correct small-\(u_0\) asymptotics. This result reconciles several theoretical and phenomenological perspectives with the conclusion that \(u_T\) remains finite for vanishing \(u_0\), which implies a propagation anomaly akin to the energy-dissipation anomaly in the limit of vanishing viscosity. Various leading-order structural properties such as a novel \(u_0\) dependence of a bulk length scale associated with front geometry are predicted in this limit. The analysis involves a formal analogy to random advection of diffusive scalars.

Keywords

Front propagation Turbulence 

Notes

Acknowledgements

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

References

  1. 1.
    Arguin, L.P.: Extrema of log-correlated random processes: principles and examples. In: Contucci, P., Giardina, C. (eds.) Advances in Disordered Systems, Random Processes and Some Applications, chap. 4, pp. 166–204. Cambridge Univ. Press, Cambridge (2017)CrossRefGoogle Scholar
  2. 2.
    Baïle, R., Muzy, J.F.: Spatial intermittency of surface layer wind fluctuations at mesoscale range. Phys. Rev. Lett. 105, 254501 (2010)CrossRefGoogle Scholar
  3. 3.
    Balkovsky, E., Fouxon, A.: Universal long-time properties of Lagrangian statistics in the Batchelor regime and their application to the passive scalar problem. Phys. Rev. E 60, 4164–4174 (1999)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Batchelor, G.K.: Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113–133 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bolthausen, E., Deuschel, J.D., Giacomin, G.: Entropic repulsion and the maximum of the two-dimensional harmonic crystal. Ann. Prob. 29, 1670–1692 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1–89 (1943)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chertkov, M., Falkovich, G., Kolokolov, I., Lebedev, V.: Statistics of a passive scalar advected by a large-scale two-dimensional velocity field: analytic solution. Phys. Rev. E 51, 5609–5627 (1995)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chertkov, M., Yakhot, V.: Propagation of Huygens front through turbulent medium. Phys. Rev. Lett. 80, 2837–2840 (1998)CrossRefGoogle Scholar
  9. 9.
    Fichot, F., Lacas, F., Veynante, D., Candel, S.M.: One-dimensional propagation of a premixed turbulent flame with a balance equation for the flame surface density. Combust. Sci. Technol. 90, 35–60 (1993)CrossRefGoogle Scholar
  10. 10.
    Frisch, U.: Turbulence: The Legacy of A. N. Kolmogorov. Cambridge Univ. Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  11. 11.
    Fyodorov, Y.V., Le Doussal, P., Rosso, A.: Counting function fluctuations and extreme value threshold in multifractal patterns: the case study of an ideal \(1/f\) noise. J. Stat. Phys. 149, 898–920 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gibson, C.H.: Fine structure of scalar fields mixed by turbulence. I. Zero-gradient points and minimal gradient surfaces. Phys. Fluids 11, 2305–2315 (1968)CrossRefzbMATHGoogle Scholar
  13. 13.
    Kerstein, A.R.: Scaling properties of the viscous-convective scalar spectral subrange in turbulent jets. Phys. Fluids A 3, 1832–1834 (1991)CrossRefGoogle Scholar
  14. 14.
    Kerstein, A.R., Ashurst, W.T.: Propagation rate of growing interfaces in stirred fluids. Phys. Rev. Lett. 68, 934–937 (1992)CrossRefGoogle Scholar
  15. 15.
    Kerstein, A.R., Ashurst, W.T., Williams, F.A.: Field equation for interface propagation in an unsteady homogeneous flow field. Phys. Rev. A 37, 2728–2731 (1988)CrossRefGoogle Scholar
  16. 16.
    Lifshitz, L.M., Pizer, S.M.: A multiresolution hierarchical approach to image segmentation based on intensity extrema. IEEE Trans. Pattern Anal. Mach. Intell. 12, 529–540 (1990)CrossRefGoogle Scholar
  17. 17.
    Lipatnikov, A.N., Chomiak, J.: Self-similarly developing, premixed, turbulent flames: a theoretical study. Phys. Fluids 17, 065105 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mayo, J.R., Kerstein, A.R.: Scaling of Huygens-front speedup in weakly random media. Phys. Lett. A 372, 5–11 (2007)CrossRefzbMATHGoogle Scholar
  19. 19.
    Mayo, J.R., Kerstein, A.R.: Fronts in randomly advected and heterogeneous media and nonuniversality of Burgers turbulence: theory and numerics. Phys. Rev. E 78, 056307 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    McKean, H.P.: Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Commun. Pure Appl. Math. 28, 323–331 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Oberlack, M., Wenzel, H., Peters, N.: On symmetries and averaging of the \(G\)-equation for premixed combustion. Combust. Theory Model. 5, 363–383 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Peters, N.: Turbulent Combustion. Cambridge Univ. Press, Cambridge (2000)CrossRefzbMATHGoogle Scholar
  23. 23.
    Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 3rd edn. R.T. Edwards, Philadelphia (2012)Google Scholar
  24. 24.
    Ronney, P.D., Haslam, B.D., Rhys, N.O.: Front propagation rates in randomly stirred media. Phys. Rev. Lett. 74, 3804–3807 (1995)CrossRefGoogle Scholar
  25. 25.
    Roy, R.: Extreme values of log-correlated Gaussian fields. Ph.D. thesis, Univ. of Chicago (2016)Google Scholar
  26. 26.
    Shraiman, B.I., Siggia, E.D.: Lagrangian path integrals and fluctuations in random flow. Phys. Rev. E 49, 2912–2927 (1994)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Sinhuber, M., Bodenschatz, E., Bewley, G.P.: Decay of turbulence at high Reynolds numbers. Phys. Rev. Lett. 114, 034501 (2015)CrossRefGoogle Scholar
  28. 28.
    Teubner, M.: Level surfaces of Gaussian random fields and microemulsions. Europhys. Lett. 14, 403–408 (1991)CrossRefGoogle Scholar
  29. 29.
    van Saarloos, W.: Front propagation into unstable states. Phys. Rep. 386, 29–224 (2003)CrossRefzbMATHGoogle Scholar
  30. 30.
    Woosley, S.E., Kerstein, A.R., Sankaran, V., Aspden, A.J., Röpke, F.K.: Type Ia supernovae: calculations of turbulent flames using the linear eddy model. Astrophys. J. 704, 255–273 (2009)CrossRefGoogle Scholar
  31. 31.
    Yakhot, V.: Propagation velocity of premixed turbulent flames. Combust. Sci. Technol. 60, 191–214 (1988)CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.Sandia National LaboratoriesLivermoreUSA
  2. 2.DanvilleUSA

Personalised recommendations