Advertisement

Journal of Statistical Physics

, Volume 176, Issue 2, pp 398–424 | Cite as

A Kinetic Description for the Herding Behavior in Financial Market

  • Hyeong-Ohk Bae
  • Seung-Yeon Cho
  • Jeongho Kim
  • Seok-Bae YunEmail author
Article
  • 73 Downloads

Abstract

As a continuation of the study of the herding model proposed in (Bae et al. in arXiv:1712.01085, 2017), we consider in this paper the derivation of the kinetic version of the herding model, the existence of the measure-valued solution and the corresponding herding behavior at the kinetic level. We first consider the mean-field limit of the particle herding model and derive the existence of the measure-valued solutions for the kinetic herding model. We then study the herding phenomena of the solutions in two different ways by introducing two different types of herding energy functionals. First, we derive a herding phenomena of the measure-valued solutions under virtually no restrictions on the parameter sets using the Barbalat’s lemma. We, however, don’t get any herding rate in this case. On the other hand, we also establish a Grönwall type estimate for another herding functional, leading to the exponential herding rate, under comparatively strict conditions. These results are then extended to smooth solutions.

Keywords

Collective behavior Herding model Mean-field limit Measure-valued solutions Barbalat’s theorem 

Notes

Acknowledgements

Bae was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (NRF-2018R1D1A1A09082848). Yun is supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1801-02.

References

  1. 1.
    Ahn, S.-M., Bae, H.-O., Ha, S.-Y., Kim, Y., Lim, H.: Application of flocking mechanism to the modeling of stochastic volatility. Math. Models Methods Appl. Sci. 23, 1603–1628 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bae, H.-O., Cho, S.-Y., Lee, S.-H., Yun, S.-B.: A particle model for the herding phenomena induced by dynamic market signals. arXiv:1712.01085 (2017)
  3. 3.
    Bae, H.-O., Choi, Y.-P., Ha, S.-Y., Kang, M.-J.: Asymptotic flocking dynamics of Cucker–Smale particles immersed in compressible fluids. Discret. Contin. Dyn. Syst. 34(11), 4419–4458 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bae, H.-O., Choi, Y.-P., Ha, S.-Y., Kang, M.-J.: Time-asymptotic interaction of flocking particles and an incompressible viscous fluid. Nonlinearity 25(4), 1155 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bae, H.-O., Ha, S.-Y., Kim, Y., Lee, S.-H., Lim, H., Yoo, J.: A mathematical model for volatility flocking with a regime switching mechanism in a stock market. Math. Models Methods Appl. Sci. 25(7), 1299–1335 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Barbalat, I.: Systemes d’équations différentielles d’oscillations non linéaires. Rev. Math. Pures Appl. 4(2), 267–270 (1959)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bellomo, N., Bellouquid, A., Knopoff, D.: From the micro-scale to collective crowd dynamics. SIAM Multiscale Model. Simul. 11(3), 943–963 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bellomo, N., Dogbe, C.: On the modeling of traffic and crowds: a survey of models, speculations, and perspectives. SIAM Rev. 53(3), 409–463 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bellomo, N., Gibelli, L.: Toward a mathematical theory of behavioral-social dynamics for pedestrian crowds. Math. Models Methods Appl. Sci. 25(13), 2417–2437 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Burini, D., De Lillo, S., Gibelli, L.: Collective learning modeling based on the kinetic theory of active particles. Phys. Life Rev. 16, 123–139 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    Carrillo, J.A., D’Orsogna, M.R., Panferov, V.: Double milling in self-propelled swarms from kinetic theory. Kinet. Relat. Models 2(2), 363–378 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Canizo, J.A., Carrillo, J.A., Rosado, J.: A well-posedness theory in measures for some kinetic models of collective motion. Math. Models Methods Appl. Sci. 21(03), 515–539 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Carrillo, J.A., Fornasier, M., Rosado, J., Toscani, G.: Asymptotic flocking dynamics for the kinetic Cucker–Smale model. SIAM J. Math. Anal. 42(1), 218–236 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Carrillo, J.A., Fornasier, M., Toscani, G., Vecil, F.: Particle, Kinetic, and Hydrodynamic Models of Swarming. Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, pp. 297–336. Birkhäuser, Boston (2010)zbMATHGoogle Scholar
  15. 15.
    Carrillo, J.A., Klar, A., Martin, S., Tiwari, S.: Self-propelled interacting particle systems with roosting force. Math. Models Methods Appl. Sci. 20(suppl. 1), 1533–1552 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Choi, Y.-P., Ha, S.-Y., Li, Z.: Emergent dynamics of the Cucker–Smale flocking model and its variants. In: Active Particles. Vol. 1. Advances in Theory, Models, and Applications, pp. 299–331. Modeling and Simulation in Science, Engineering and Technology, Birkhäuser/Springer, Cham (2017)Google Scholar
  17. 17.
    Cordier, S., Pareschi, L., Toscani, G.: On a kinetic model for a simple market economy. J. Stat. Phys. 120(1–2), 253–277 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and spatial sorting in animal groups. JTB 218(1), 1–11 (2002)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control 52(5), 852–862 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Degond, P., Appert-Rolland, C., Moussaid, M., Pettré, J., Theraulaz, G.: A hierarchy of heuristic-based models of crowd dynamics. J. Stat. Phys. 152(6), 1033–1068 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Degond, P., Motsch, S.: Continuum limit of self-driven particles with orientation interaction. Math. Models Methods Appl. Sci. 18(1), 1193–1215 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Dolfin, M., Leonida, L., Outada, N.: Modeling human behavior in economics and social science. Phys. Life Rev. 22, 1–21 (2017)CrossRefGoogle Scholar
  23. 23.
    D’Orsogna, M.R., Chuang, Y.L., Bertozzi, A.L., Chayes, L.S.: Self-propelled particles with soft-core interactions, patterns, stability, and collapse. Phys. Rev. Lett. 96(10), 104302 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    During, B., Jungel, A., Trussardi, L.: A kinetic equation for economic value estimate with irrationality and herding. Kinet. Relat. Models 10, 239–261 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Figalli, A., Kang, M.-J.: A rigorous derivation from the kinetic Cucker-Smale model to the pressureless Euler system with nonlocal alignment. Anal. PDE 12(3), 843–866 (2019)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ha, S.-Y., Liu, J.-G.: A simple proof of the Cucker–Smale flocking dynamics and mean-field limit. Commun. Math. Sci. 7(2), 297–325 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Ha, S.-Y., Tadmor, E.: From particle to kinetic and hydrodynamic descriptions of flocking. Kinet. Relat. Models 1(3), 415–435 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Helbing, D., Molnar, P.: Self-organization phenomena in pedestrian crowds. arXiv:cond-mat/9806152 (1998)
  29. 29.
    Kang, J.-H., Ha, S.-Y., Kang, K., Jeong, E.: How do cultural classes emerge from assimilation and distinction? An extension of the Cucker–Smale flocking model. J. Math. Sociol. 38, 47–71 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Karper, T.K., Mellet, A., Trivisa, K.: Hydrodynamic limit of the kinetic Cucker–Smale flocking model. Math. Models Methods Appl. Sci. 25(01), 131–163 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Marsan, G.A., Bellomo, N., Gibelli, L.: Stochastic evolutionary differential games toward a systems theory of behavioral social dynamics. Math. Models Methods Appl. Sci. 26(06), 1051–1093 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Mirabet, V., Auger, P., Lett, C.: Spatial structures in simulations of animal grouping. Ecol. Model. 201(3–4), 468–476 (2007)CrossRefGoogle Scholar
  33. 33.
    Motsch, S., Tadmor, E.: A new model for self-organized dynamics and its flocking behavior. J. Stat. Phys. 144(5), 923–947 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Naldi, G., Pareschi, L., Toscani, G. (eds.). Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences. Springer, Berlin (2010)Google Scholar
  35. 35.
    Nelson, P., Sopasakis, A.: The Prigogine–Herman kinetic model predicts widely scattered traffic flow data at high concentrations. Transp. Res. Part B: Methodol. 32(8), 589–604 (1998)CrossRefGoogle Scholar
  36. 36.
    Pareschi, L., Toscani, G.: Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods. Oxford University Press, Oxford (2013)zbMATHGoogle Scholar
  37. 37.
    Prigogine, I., Herman, R.: Kinetic Theory of Vehicular Traffic. American Elsevier Publishing, New York (1971)zbMATHGoogle Scholar
  38. 38.
    Toscani, G.: Kinetic models of opinion formation. Commun. Math. Sci. 4(3), 481–496 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226 (1995)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Villani, C.: Optimal Transport, Old and New. Springer, Berlin (2008)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Financial EngineeringAjou UniversitySuwonRepublic of Korea
  2. 2.Department of MathematicsSungkyunkwan UniversitySuwonRepublic of Korea
  3. 3.Department of Mathematical SciencesSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations