Journal of Statistical Physics

, Volume 176, Issue 2, pp 312–357 | Cite as

Statistical Mechanical Expressions of Slip Length

  • Hiroyoshi NakanoEmail author
  • Shin-ichi Sasa


We provide general derivations of the partial slip boundary condition from microscopic dynamics and linearized fluctuating hydrodynamics. The derivations are based on the assumption of separation of scales between microscopic behavior, such as collision of particles, and macroscopic behavior, such as relaxation of fluid to global equilibrium. These derivations lead to several statistical mechanical expressions of the slip length, which are classified into two types. The expression in the first type is given as a local transport coefficient, which is related to the linear response theory that describes the relaxation process of the fluid. The second type is related to the linear response theory that describes the non-equilibrium steady state and the slip length is given as combination of global transport coefficients, which are dependent on macroscopic lengths such as a system size. Our derivations clarify that the separation of scales must be seriously considered in order to distinguish the expressions belonging to two types. Based on these linear response theories, we organize the relationship among the statistical mechanical expressions of the slip length suggested in previous studies.


Hydrodynamics Boundary condition Slip length Green–Kubo formula Linearized fluctuating hydrodynamics 



The authors would like to thank A. Yoshimori, M. Itami and Y. Minami for helpful comments. The present study was supported by KAKENHI (Nos. 17H01148).


  1. 1.
    Neto, C., Evans, D.R., Bonaccurso, E., Butt, H.J., Craig, V.S.J.: Boundary slip in newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68(12), 2859 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Lauga, E., Brenner, M.P., Stone, H.A.: Microfluidics: the no-slip boundary condition. In: Springer Handbook of Experimental Fluid Mechanics, pp. 1219–1240. Springer (2007)Google Scholar
  3. 3.
    Cao, B.Y., Sun, J., Chen, M., Guo, Z.Y.: Molecular momentum transport at fluid-solid interfaces in mems/nems: a review. Int. J. Mol. Sci. 10(11), 4638–4706 (2009)CrossRefGoogle Scholar
  4. 4.
    Bocquet, L., Charlaix, E.: Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39(3), 1073–1095 (2010)CrossRefGoogle Scholar
  5. 5.
    Pit, R., Hervet, H., Leger, L.: Direct experimental evidence of slip in hexadecane: solid interfaces. Phys. Rev. Lett. 85(5), 980 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    Zhu, Y., Granick, S.: Rate-dependent slip of newtonian liquid at smooth surfaces. Phys. Rev. Lett. 87(9), 096105 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    Zhu, Y., Granick, S.: Limits of the hydrodynamic no-slip boundary condition. Phys. Rev. Lett. 88(10), 106102 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    Cottin-Bizonne, C., Cross, B., Steinberger, A., Charlaix, E.: Boundary slip on smooth hydrophobic surfaces: intrinsic effects and possible artifacts. Phys. Rev. Lett. 94(5), 056102 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Maali, A., Cohen-Bouhacina, T., Kellay, H.: Measurement of the slip length of water flow on graphite surface. Appl. Phys. Lett. 92(5), 053101 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Vinogradova, O.I., Koynov, K., Best, A., Feuillebois, F.: Direct measurements of hydrophobic slippage using double-focus fluorescence cross-correlation. Phys. Rev. Lett. 102(11), 118302 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Thompson, P.A., Troian, S.M.: A general boundary condition for liquid flow at solid surfaces. Nature 389(6649), 360 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    Gupta, S., Cochran, H., Cummings, P.: Shear behavior of squalane and tetracosane under extreme confinement. i. model, simulation method, and interfacial slip. J. Chem. Phys. 107(23), 10316–10326 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    Barrat, J.L., Bocquet, L.: Large slip effect at a nonwetting fluid-solid interface. Phys. Rev. Lett. 82(23), 4671 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    Cieplak, M., Koplik, J., Banavar, J.R.: Boundary conditions at a fluid-solid interface. Phys. Rev. Lett. 86(5), 803 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    Landau, L., Lifshitz, E.: Course of Theoretical Physics. vol. 6: Fluid Mechanics. London (1959)Google Scholar
  16. 16.
    Vinogradova, O.I.: Drainage of a thin liquid film confined between hydrophobic surfaces. Langmuir 11(6), 2213–2220 (1995)CrossRefGoogle Scholar
  17. 17.
    Navier, C.L.M.H.: Memoire sur les du mouvement des fluides. Mem. Académie des Inst. Sciences Fr. 6, 389–416 (1823)Google Scholar
  18. 18.
    Lamb, H.: Hydrodynamics. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  19. 19.
    Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, vol. 1. Springer, New York (2012)zbMATHGoogle Scholar
  20. 20.
    Cottin-Bizonne, C., Barrat, J.L., Bocquet, L., Charlaix, E.: Low-friction flows of liquid at nanopatterned interfaces. Nat. Mater. 2(4), 237 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    Priezjev, N.V., Troian, S.M.: Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: molecular-scale simulations versus continuum predictions. J. Fluid Mech. 554, 25–46 (2006)ADSCrossRefzbMATHGoogle Scholar
  22. 22.
    Lee, T., Charrault, E., Neto, C.: Interfacial slip on rough, patterned and soft surfaces: a review of experiments and simulations. Adv. Colloid Interface Sci. 210, 21–38 (2014)CrossRefGoogle Scholar
  23. 23.
    Barrat, J.L., Bocquet, L.: Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface. Faraday Discuss. 112, 119–128 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    Huang, D.M., Sendner, C., Horinek, D., Netz, R.R., Bocquet, L.: Water slippage versus contact angle: a quasiuniversal relationship. Phys. Rev. Lett. 101(22), 226101 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Voronov, R.S., Papavassiliou, D.V., Lee, L.L.: Review of fluid slip over superhydrophobic surfaces and its dependence on the contact angle. Ind. Eng. Chem. Res. 47(8), 2455–2477 (2008)CrossRefGoogle Scholar
  26. 26.
    Kirkwood, J.G.: The statistical mechanical theory of transport processes i. general theory. J. Chem. Phys. 14(3), 180–201 (1946)ADSCrossRefGoogle Scholar
  27. 27.
    Kirkwood, J.G., Buff, F.P., Green, M.S.: The statistical mechanical theory of transport processes. iii. the coefficients of shear and bulk viscosity of liquids. J. Chem. Phys. 17(10), 988–994 (1949)ADSCrossRefGoogle Scholar
  28. 28.
    Irving, J., Kirkwood, J.G.: The statistical mechanical theory of transport processes. iv. the equations of hydrodynamics. J. Chem. Phys. 18(6), 817–829 (1950)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Green, M.S.: Markoff random processes and the statistical mechanics of time-dependent phenomena. ii. irreversible processes in fluids. J. Chem. Phys. 22(3), 398–413 (1954)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Mori, H.: Statistical-mechanical theory of transport in fluids. Phys. Rev. 112(6), 1829 (1958)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Kawasaki, K., Gunton, J.D.: Theory of nonlinear transport processes: nonlinear shear viscosity and normal stress effects. Phys. Rev. A 8(4), 2048 (1973)ADSCrossRefGoogle Scholar
  32. 32.
    Zubarev, D., Morozov, V.: Statistical Mechanics of Nonequilibrium Processes. Akademie Verlag, Berlin (1996)zbMATHGoogle Scholar
  33. 33.
    Sasa, Si: Derivation of hydrodynamics from the hamiltonian description of particle systems. Phys. Rev. Lett. 112(10), 100602 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    Hongo, M.: Nonrelativistic hydrodynamics from quantum field theory: (i) normal fluid composed of spinless schrödinger fields. J. Stat. Phys. pp. 1–42 (2018)Google Scholar
  35. 35.
    Bocquet, L., Barrat, J.L.: Hydrodynamic boundary conditions, correlation functions, and kubo relations for confined fluids. Phys. Rev. E 49(4), 3079 (1994)ADSCrossRefGoogle Scholar
  36. 36.
    Fuchs, M., Kroy, K.: Statistical mechanics derivation of hydrodynamic boundary conditions: the diffusion equation. J. Phys. 14(40), 9223 (2002)Google Scholar
  37. 37.
    Petravic, J., Harrowell, P.: On the equilibrium calculation of the friction coefficient for liquid slip against a wall. J. Chem. Phys. 127(17), 174706 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    Kobryn, A.E., Kovalenko, A.: Molecular theory of hydrodynamic boundary conditions in nanofluidics. J. Chem. Phys. 129(13), 134701 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    Hansen, J.S., Todd, B., Daivis, P.J.: Prediction of fluid velocity slip at solid surfaces. Phys. Rev. E 84(1), 016313 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    Huang, K., Szlufarska, I.: Green-kubo relation for friction at liquid-solid interfaces. Phys. Rev. E 89(3), 032119 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    Ramos-Alvarado, B., Kumar, S., Peterson, G.: Hydrodynamic slip length as a surface property. Phys. Rev. E 93(2), 023101 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    Nakamura, Y., Yoshimori, A., Akiyama, R.: Perturbation theory of large-particle diffusion in a binary solvent mixture. J. Phys. Soc. Jpn. 83(6), 064601 (2014)ADSCrossRefGoogle Scholar
  43. 43.
    Nakamura, Y., Yoshimori, A., Akiyama, R., Yamaguchi, T.: Stick boundary condition at large hard sphere arising from effective attraction in binary hard-sphere mixtures. J. Chem. Phys. 148(12), 124502 (2018)ADSCrossRefGoogle Scholar
  44. 44.
    Bocquet, L., Barrat, J.L.: On the green-kubo relationship for the liquid-solid friction coefficient. J. Chem. Phys. 139(4), 044704 (2013)ADSCrossRefGoogle Scholar
  45. 45.
    Zwanzig, R.: Hydrodynamic fluctuations and stokes law friction. J. Res. Natl. Bur. Std.(US) B 68, 143–145 (1964)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Bedeaux, D., Mazur, P.: Brownian motion and fluctuating hydrodynamics. Physica 76(2), 247–258 (1974)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Itami, M., Sasa, Si: Derivation of stokes law from kirkwoods formula and the green-kubo formula via large deviation theory. J. Stat. Phys. 161(3), 532–552 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Itami, M., Sasa, Si: Singular behaviour of time-averaged stress fluctuations on surfaces. J. Stat. Mech. 2018(12), 123210 (2018)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Priezjev, N.V., Troian, S.M.: Molecular origin and dynamic behavior of slip in sheared polymer films. Phys. Rev. Lett. 92(1), 018302 (2004)ADSCrossRefGoogle Scholar
  50. 50.
    Falk, K., Sedlmeier, F., Joly, L., Netz, R.R., Bocquet, L.: Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 10(10), 4067–4073 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    Priezjev, N.V.: Relationship between induced fluid structure and boundary slip in nanoscale polymer films. Phys. Rev. E 82(5), 051603 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78(14), 2690 (1997)ADSCrossRefGoogle Scholar
  53. 53.
    Crooks, G.E.: Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60(3), 2721 (1999)ADSCrossRefGoogle Scholar
  54. 54.
    Seifert, U.: Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75(12), 126001 (2012)ADSCrossRefGoogle Scholar
  55. 55.
    Nakano, H., Sasa, Si: Microscopic determination of macroscopic boundary conditions in newtonian liquids. Phys. Rev. E 99(1), 013106 (2019)ADSCrossRefGoogle Scholar
  56. 56.
    Monahan, C., Naji, A., Horgan, R., Lu, B.S., Podgornik, R.: Hydrodynamic fluctuation-induced forces in confined fluids. Soft Matter 12(2), 441–459 (2016)ADSCrossRefGoogle Scholar
  57. 57.
    Kim, S., Karrila, S.J.: Microhydrodynamics: Principles and Selected Applications. Courier Corporation, Chelmsford (2013)Google Scholar
  58. 58.
    Schwinger, J., DeRaad Jr., L.L., Milton, K., Tsai, Wy: Classical Electrodynamics. Westview Press, Boulder (1998)Google Scholar
  59. 59.
    Mazenko, G.F.: Nonequilibrium Statistical Mechanics. Wiley, New York (2008)zbMATHGoogle Scholar
  60. 60.
    Das, S.P.: Statistical Physics of Liquids at Freezing and Beyond. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  61. 61.
    Lagar’kov, A.N., Sergeev, V.M.: Molecular dynamics method in statistical physics. Soviet Physics Uspekhi 21(7), 566 (1978)ADSCrossRefGoogle Scholar
  62. 62.
    Español, P., Zúñiga, I.: Force autocorrelation function in brownian motion theory. J. Chem. Phys. 98(1), 574–580 (1993)ADSCrossRefGoogle Scholar
  63. 63.
    Forster, D., Nelson, D.R., Stephen, M.J.: Large-distance and long-time properties of a randomly stirred fluid. Phys. Rev. A 16(2), 732 (1977)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    Wolynes, P.G.: Hydrodynamic boundary conditions and mode-mode coupling theory. Phys. Rev. A 13(3), 1235 (1976)ADSCrossRefGoogle Scholar
  65. 65.
    Nieuwoudt, J., Kirkpatrick, T., Dorfman, J.: Long-range boundary effects in simple fluids. J. Stat. Phys. 34(1–2), 203–223 (1984)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Schmatko, T., Hervet, H., Leger, L.: Friction and slip at simple fluid-solid interfaces: the roles of the molecular shape and the solid-liquid interaction. Phys. Rev Lett. 94(24), 244501 (2005)ADSCrossRefGoogle Scholar
  67. 67.
    Ulmanella, U., Ho, C.M.: Molecular effects on boundary condition in micro/nanoliquid flows. Phys. Fluids 20(10), 101512 (2008)ADSCrossRefzbMATHGoogle Scholar
  68. 68.
    Joseph, P., Cottin-Bizonne, C., Benoit, J.M., Ybert, C., Journet, C., Tabeling, P., Bocquet, L.: Slippage of water past superhydrophobic carbon nanotube forests in microchannels. Phys. Rev. Lett. 97(15), 156104 (2006)ADSCrossRefGoogle Scholar
  69. 69.
    Lee, C., Choi, C.H., Kim, C.J.: Structured surfaces for a giant liquid slip. Phys. Rev. Lett. 101(6), 064501 (2008)ADSCrossRefGoogle Scholar
  70. 70.
    Martini, A., Hsu, H.Y., Patankar, N.A., Lichter, S.: Slip at high shear rates. Phys. Rev. Lett. 100(20), 206001 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsKyoto UniversityKyotoJapan

Personalised recommendations