# Modeling Cell Size Dynamics in a Confined Nonuniform Dense Cell Culture

Article

First Online:

- 74 Downloads

## Abstract

In this work, we analyze an ensemble of dividing and growing living cells that maintain contact with each other. The dynamics of the cell area distribution in a confined system is theoretically investigated in both uniform and nonuniform settings. The effective pressure is introduced to model the experimentally observed phenomenon in which the average cell size dramatically decreases over time. For a nonuniform system, the cell shift due to the gradient of the effective pressure is considered and its effect on the average cell area profiles is examined.

## Notes

## References

- 1.Shraiman, B.I.: Mechanical feedback as a possible regulator of tissue growth. Proc. Natl. Acad. Sci. USA
**102**, 3318 (2005)ADSCrossRefGoogle Scholar - 2.Beroz, F., Yan, J., Meir, Y., Sabass, B., Stone, H.A., Bassler, B.L., Wingreen, N.S.: Verticalization of bacterial biofilms. Nat. Phys.
**14**, 954 (2018)CrossRefGoogle Scholar - 3.Hufnagel, L., Teleman, A.A., Rouault, H., Cohen, S.M., Shraiman, B.I.: On the mechanism of wing size determination in fly development. Proc. Natl. Acad. Sci. USA
**104**, 3835 (2007)ADSCrossRefGoogle Scholar - 4.Bi, D., Yang, X., Marchetti, M.C., Manning, M.L.: Motility-driven glass and jamming transitions in biological tissues phys. Rev. X
**6**, 021011 (2016)Google Scholar - 5.Popovic, M., Nandi, A., Merkel, M., Etournay, R., Eaton, S., Julicher, F., Salbreux, G.: Active dynamics of tissue shear flow. New J. Phys.
**19**, 033006 (2017)ADSCrossRefGoogle Scholar - 6.Barton, D.L., Henkes, S., Weijer, C.J., Sknepnek, R.: Active vertex model for cell-resolution description of epithelial tissue mechanics. PLoS Comput. Biol.
**13**(6), e1005569 (2017)ADSCrossRefGoogle Scholar - 7.Moshe, M., Bowick, M.J., Marchetti, M.C.: Geometric frustration and solid-solid transitions in model 2D tissue. Phys. Rev. Lett.
**120**, 268105 (2018)ADSCrossRefGoogle Scholar - 8.Ranft, J., Basan, M., Elgeti, J., Joanny, J.-F., Prost, J., Julicher, F.: Fluidization of tissues by cell division and apoptosis. Proc. Natl. Acad. Sci. USA
**107**, 20863 (2010)ADSCrossRefGoogle Scholar - 9.Damavandi, O.K., Lubensky, D.K.: The statistics of noisy growth with mechanical feedback in elastic tissues. PNAS
**116**(12), 5350–5355 (2018)CrossRefGoogle Scholar - 10.Abercrombie, M.: Contact inhibition in tissue culture. Vitro
**6**, 128 (1970)CrossRefGoogle Scholar - 11.Martz, E., Steinberg, M.: The role of cell-cell contact in contact inhibition of cell division: a review and new evidence. J. Cell Physiol.
**79**, 189 (1972)CrossRefGoogle Scholar - 12.Nelson, C.M., Chen, C.S.: Cell-cell signaling by direct contact increases cell proliferation via a PI3K-dependent signal. FEBS Lett.
**514**, 238 (2002)ADSCrossRefGoogle Scholar - 13.Puliafito, A., Hufnagel, L., Neveu, P., Streichan, S., Sigal, A., Fygenson, D.K., Shraiman, B.I.: Collective and single cell behavior in epithelial contact inhibition. Proc. Natl. Acad. Sci. USA
**109**, 739 (2012)ADSCrossRefGoogle Scholar - 14.Streichan, S.J., Hoerner, C.R., Schneidt, T., Holzer, D., Hufnagel, L.: Spatial constraints control cell proliferation in tissues. Proc. Natl. Acad. Sci. USA
**111**, 5586 (2014)ADSCrossRefGoogle Scholar - 15.Puliafito, A., Primo, L., Celani, A.: Cell-size distribution in epithelial tissue formation and homeostasis. J. R. Soc. Interface
**14**, 20170032 (2017)CrossRefGoogle Scholar - 16.Wilk, G., Iwasa, M., Fuller, P.E., Kandere-Grzybowska, K., Grzybowski, B.A.: Universal area distributions in the monolayers of confluent mammalian cells. Phys. Rev. Lett.
**112**, 138104 (2014)ADSCrossRefGoogle Scholar - 17.Streichan, S.: Spatial constraints control cell proliferation in tissues, talk at the “KITP Conference on Active Processes in Living and Nonliving Matter”, (2014). http://online.kitp.ucsb.edu/online/bioacter-c14/streichan/
- 18.Reffay, M., Petitjean, L., Coscoy, S., Grasland-Mongrain, E., Amblard, F., Buguin, A., Silberzan, P.: Orientation and polarity in collectively migrating cell structures: statics and dynamics. Biophys. J.
**100**, 2566 (2011)ADSCrossRefGoogle Scholar - 19.Khain, E., Tsimring, L.S.: Effective pressure and cell area distribution in a confined monolayer. Fluid Dyn. Res.
**50**, 051413 (2018)ADSCrossRefGoogle Scholar - 20.Ginzberg, M.B., Kafri, R., Kirschner, M.: On being the right (cell) size. Science
**348**, 1245075 (2015)CrossRefGoogle Scholar - 21.Basan, M., Risler, T., Joanny, J.-F., Sastre-Garau, X., Prost, J.: Homeostatic competition drives tumor growth and metastasis nucleation. HFSP J.
**3**, 265 (2009)CrossRefGoogle Scholar - 22.Zehnder, S.M., Suaris, M., Bellaire, M.M., Angelini, T.E.: Cell volume fluctuations in MDCK monolayers. Biophys. J.
**108**, 247 (2015)ADSCrossRefGoogle Scholar - 23.Khain, E., Katakowski, M., Hopkins, S., Szalad, A., Zheng, X.G., Jiang, F., Chopp, M.: Collective behavior of brain tumor cells: the role of hypoxia. Phys. Rev. E
**83**, 031920 (2011)ADSCrossRefGoogle Scholar - 24.Khain, E., Sander, L.M., Schneider-Mizell, C.M.: The role of cell-cell adhesion in wound healing. J. Stat. Phys.
**128**, 209 (2007)ADSCrossRefzbMATHGoogle Scholar - 25.Simpson, M.J., Towne, C., McElwain, D.L.S., Upton, Z.: Migration of breast cancer cells: understanding the roles of volume exclusion and cell-to-cell adhesion. Phys. Rev. E
**82**, 041901 (2010)ADSCrossRefGoogle Scholar - 26.Khain, E., Katakowski, M., Charteris, N., Jiang, F., Chopp, M.: Migration of adhesive glioma cells: front propagation and fingering. Phys. Rev. E
**86**, 011904 (2012)ADSCrossRefGoogle Scholar - 27.Charteris, N., Khain, E.: Modeling chemotaxis of adhesive cells: stochastic lattice approach and continuum description. New J. Phys.
**16**, 025002 (2014)ADSCrossRefGoogle Scholar

## Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019