Journal of Statistical Physics

, Volume 176, Issue 2, pp 279–298 | Cite as

Bifurcations in the Time-Delayed Kuramoto Model of Coupled Oscillators: Exact Results

  • David MétivierEmail author
  • Shamik Gupta


In the context of the Kuramoto model of coupled oscillators with distributed natural frequencies interacting through a time-delayed mean-field, we derive as a function of the delay exact results for the stability boundary between the incoherent and the synchronized state and the nature in which the latter bifurcates from the former at the critical point. Our results are based on an unstable manifold expansion in the vicinity of the bifurcation, which we apply to both the kinetic equation for the single-oscillator distribution function in the case of a generic frequency distribution and the corresponding Ott–Antonsen (OA)-reduced dynamics in the special case of a Lorentzian distribution. Besides elucidating the effects of delay on the nature of bifurcation, we show that the approach due to Ott and Antonsen, although an ansatz, gives an amplitude dynamics of the unstable modes close to the bifurcation that remarkably coincides with the one derived from the kinetic equation. Further more, quite interestingly and remarkably, we show that close to the bifurcation, the unstable manifold derived from the kinetic equation has the same form as the OA manifold, implying thereby that the OA-ansatz form follows also as a result of the unstable manifold expansion. We illustrate our results by showing how delay can affect dramatically the bifurcation of a bimodal distribution.


Nonlinear dynamics and chaos Synchronization Coupled oscillators Bifurcation analysis 



This work was initiated while DM was affiliated to Laboratory J.A. Dieudonné, Université Côte d’Azur, Nice, France and was finalized with DM being affiliated to Los Alamos National Laboratory (LANL). DM gratefully acknowledges the support of the U.S. Department of Energy through the LANL/LDRD Program and the Center for Non Linear Studies, LANL. The paper was written up during the visit of DM and SG to the International Centre for Theoretical Physics – South American Institute for Fundamental Research, São Paulo, Brazil in May 2018 and during SG’s extended stay at the Universidade Federal de São Carlos and the Centro de Pesquisa em Óptica e Fotônica, Sào Carlos, Brazil during June 2018. The authors thank these institutions for warm hospitality and financial support.


  1. 1.
    Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Berlin (1984)CrossRefzbMATHGoogle Scholar
  2. 2.
    Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Acebrón, J.A., Bonilla, L.L., Pérez Vicente, C.J., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Gupta, S., Campa, A., Ruffo, S.: Kuramoto model of synchronization: equilibrium and non-equilibrium aspects. J. Stat. Mech. 2014, R08001 (2014)CrossRefGoogle Scholar
  5. 5.
    Rodrigues, F.A., Peron, T.K.D.M., Ji, P., Kurths, J.: The Kuramoto model in complex networks. Phys. Rep. 610, 1 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gherardini, S., Gupta, S., Ruffo, S.: Spontaneous synchronization and nonequilibrium statistical mechanics of coupled phase oscillators. Contemp. Phys. 59, 229 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    Gupta, S., Campa, A., Ruffo, S.: Statistical Physics of Synchronization. Springer, Berlin (2018)CrossRefzbMATHGoogle Scholar
  8. 8.
    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Strogatz, S.H.: Sync: The Emerging Science of Spontaneous Order. Hyperion, New York (2003)Google Scholar
  10. 10.
    Buck, J.: Synchronous rhythmic flashing of fireflies. II. Q. Rev. Biol. 63, 265 (1988)CrossRefGoogle Scholar
  11. 11.
    Peskin, C.S.: Mathematical Aspects of Heart Physiology. Courant Institute of Mathematical Sciences, New York (1975)zbMATHGoogle Scholar
  12. 12.
    Kiss, I., Zhai, Y., Hudson, J.: Emerging coherence in a population of chemical oscillators. Science 296, 1676 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Temirbayev, A.A., Zhanabaev, ZZh, Tarasov, S.B., Ponomarenko, V.I., Rosenblum, M.: Experiments on oscillator ensembles with global nonlinear coupling. Phys. Rev. E 85, 015204(R) (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Benz, S.P., Burroughs, C.J.: Coherent emission from twodimensional Josephson junction arrays. Appl. Phys. Lett. 58, 2162 (1991)ADSCrossRefGoogle Scholar
  15. 15.
    Rohden, M., Sorge, A., Timme, M., Witthaut, D.: Self-Organized synchronization in decentralized power grids. Phys. Rev. Lett. 109, 064101 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    Herrgen, L., Ares, S., Morelli, L.G., Schröter, C., Jülicher, F., Oates, A.C.: Intercellular coupling regulates the period of the segmentation clock. Curr. Biol. 20, 1244 (2010)CrossRefGoogle Scholar
  17. 17.
    Wetzel, L., Jörg, D.J., Pollakis, A., Rave, W., Fettweis, G., Jülicher, F.: Self-organized synchronization of digital phase-locked loops with delayed coupling in theory and experiment. PLoS ONE 12, e0171590 (2017)CrossRefGoogle Scholar
  18. 18.
    Blondeau, F.-C., Chauvet, G.: Stable, oscillatory, and chaotic regimes in the dynamics of small neural networks with delay. Neural Netw. 5, 735 (1992)CrossRefGoogle Scholar
  19. 19.
    Niebur, E., Schuster, H.G., Kammen, D.M.: Collective frequencies and metastability in networks of limit-cycle oscillators with time delay. Phys. Rev. Lett. 67, 2753 (1991)ADSCrossRefGoogle Scholar
  20. 20.
    Yeung, M.K.S., Strogatz, S.H.: Time delay in the Kuramoto Model of coupled oscillators. Phys. Rev. Lett. 82, 648 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    Sakaguchi, H., Kuramoto, Y.: A soluble active rotator model showing phase transitions via mutual entrainment. Prog. Theor. Phys. 76, 576 (1986)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Montbrió, E., Pazó, D., Schmidt, J.: Time delay in the Kuramoto model with bimodal frequency distribution. Phys. Rev. E 74, 056201 (2006)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Ott, E., Antonsen, T.M.: Low dimensional behavior of large systems of globally coupled oscillators. Chaos 18, 037113 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Ott, E., Antonsen, T.M.: Long time evolution of phase oscillator systems. Chaos 19, 023117 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Balmforth, N.J., Sassi, R.: A shocking display of synchrony. Physica D 143, 21 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Carrillo, J.A., Choi, Y.P., Pareschi, L.: Structure preserving schemes for the continuum Kuramoto model: phase transitions, arXiv preprint arXiv:1803.03886 (2018)
  27. 27.
    Wolfrum, M., Gurevich, S.V., Omel’chenko, O.E.: Turbulence in the Ott-Antonsen equation for arrays of coupled phase oscillators. Nonlinearity 29, 257 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Pazó, D., Montbrió, E.: From quasiperiodic partial synchronization to collective chaos in populations of inhibitory neurons with delay. Phys. Rev. Lett. 116, 23 (2016)CrossRefGoogle Scholar
  29. 29.
    Martens, E.A., Bick, C., Panaggio, M.J.: Chimera states in two populations with heterogeneous phase-lag. Chaos 26, 094819 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Laing, C.R.: Traveling waves in arrays of delay-coupled phase oscillators. Chaos 26, 094802 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Ott, E., Antonsen Jr., T.M.: Frequency and phase synchronization in large groups: low dimensional description of synchronized clapping, firefly flashing, and cricket chirping. Chaos 27, 051101 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Goldobin, D.S., Pimenova, A.V., Rosenblum, M., Pikovsky, A.: Competing influence of common noise and desynchronizing coupling on synchronization in the Kuramoto-Sakaguchi ensemble. EPJ ST 226, 1921 (2017)ADSGoogle Scholar
  33. 33.
    Zhang, X., Pikovsky, A., Liu, Z.: Dynamics of oscillators globally coupled via two mean fields. Sci. Rep. 7, 2104 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    Hale, J.K.: Linear functional differential equations with constant coefficients. Contrib. Differ. Equ. 2, 291 (1963)MathSciNetGoogle Scholar
  35. 35.
    Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer, New York (1993)CrossRefzbMATHGoogle Scholar
  36. 36.
    Crawford, J.D.: Amplitude expansions for instabilities in populations of globally-coupled oscillators. J. Stat. Phys. 74, 1047 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Crawford, J.D.: Universal trapping scaling on the unstable manifold for a collisionless electrostatic mode. Phys. Rev. Lett. 73, 656 (1994)ADSCrossRefGoogle Scholar
  38. 38.
    Crawford, J.D.: Scaling and singularities in the entrainment of globally coupled oscillators. Phys. Rev. Lett. 74, 4341 (1995)ADSCrossRefGoogle Scholar
  39. 39.
    Crawford, J.D.: Amplitude equations for electrostatic waves: universal singular behavior in the limit of weak instability. Phys. Plasmas 2, 97 (1995)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Crawford, J.D., Davies, K.T.R.: Synchronization of globally coupled phase oscillators: singularities and scaling for general couplings. Physica D 125, 1 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Barré, J., Métivier, D.: Bifurcations and singularities for coupled oscillators with inertia and frustration. Phys. Rev. Lett. 117, 214102 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    Martens, E.A., Barreto, E., Strogatz, S.H., Ott, E., So, P., Antonsen, T.M.: Exact results for the Kuramoto model with a bimodal frequency distribution. Phys. Rev. E 79, 026204 (2009)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    Frank, T.D.: Kramers-Moyal expansion for stochastic differential equations with single and multiple delays: applications to financial physics and neurophysics. Phys. Lett. A 360, 552 (2007)ADSCrossRefzbMATHGoogle Scholar
  44. 44.
    Dietert, H., Fernandez, B.: The mathematics of asymptotic stability in the Kuramoto model. Proc. R. Soc. A 12;474(2220), 20180467 (2018)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Murdock, J.: Normal forms and unfoldings for local dynamical systems. Springer, New York (2006)zbMATHGoogle Scholar
  46. 46.
    Guo, S., Wu, J.: Bifurcation Theory of Functional Differential Equations. Springer, New York (2013)CrossRefzbMATHGoogle Scholar
  47. 47.
    Niu, B., Guo, Y.: Bifurcation analysis on the globally coupled Kuramoto oscillators with distributed time delays. Physica D 266, 23 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Chiba, H.: A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model. Ergod. Theory Dyn. Syst. 35, 762 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Dietert, H.: Stability and bifurcation for the Kuramoto model. J. Math. Pures Appl. 105, 451 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering. Westview Press, Boulder (2014)zbMATHGoogle Scholar
  51. 51.
    Crawford, J.D., Hislop, P.D.: Application of the method of spectral deformation to the Vlasov-poisson system. Ann. Phys. 189, 265 (1989)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Strogatz, S.H., Mirollo, R.E.: Stability of incoherence in a population of coupled oscillators. J. Stat. Phys. 63, 613 (1991)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    Strogatz, S.H., Mirollo, R.E., Matthews, P.C.: Coupled nonlinear oscillators below the synchronization threshold: relaxation by generalized Landau damping. Phys. Rev. Lett. 68, 2730 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Leung, A.Y.T., Yang, H.X., Zhu, P.: Periodic bifurcation of Duffing-van der Pol oscillators having fractional derivatives and time delay. Commun. Nonlinear Sci. Numer. Simul. 19, 1142 (2014)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    Xu, X., Hu, H.Y., Wang, H.L.: Stability, bifurcation and chaos of a delayed oscillator with negative damping and delayed feedback control. Nonlinear Dyn. 49, 117 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    Choe, Chol-Ung., Kim, Ryong-Son., Jang, Hyok., Hövel, P., Schöll, E.: Delayed-feedback control: arbitrary and distributed delay-time and noninvasive control of synchrony in networks with heterogeneous delays. Int. J. Dyn. Control 2 (2014)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Nonlinear Studies and Theoretical Division T-4 of Los Alamos National LaboratoryNew MexicoUSA
  2. 2.Department of PhysicsRamakrishna Mission Vivekananda UniversityHowrahIndia

Personalised recommendations