Energy as an Entanglement Witnesses for One Dimensional XYZ Heisenberg Lattice: Optimization Approach

  • T. Homayoun
  • K. AghayarEmail author


If energy ensemble average is less than the minimum energy of separable states, the system is entangled. In this study, we consider energy as an entanglement witness for one dimensional XYZ Heisenberg lattice up to ten qubits analytically. We find minimum of energy using Lagrange undetermined multipliers to construct the entanglement witness. We also find threshold temperature and magnetic field, for which below them the system is entangled. The results are in good agreement with the literature. For systems with more than six qubits, the results show temperature gets a stable value for a zero magnetic field.


Entanglement witness Heisenberg lattice Lagrange undetermined multipliers 



  1. 1.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  2. 2.
    Arnesen, M.C., Bose, S., Vedral, V.: Natural thermal and magnetic entanglement in 1D Heisenberg model. Phys. Rev. Lett. 87, 017901 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    Gühne, O., Tóth, G., Briegel, H.J.: Multipartite entanglement in spin chains. New J. Phys. 7, 229 (2005)CrossRefGoogle Scholar
  4. 4.
    Yeo, Y.: Studying the thermally entangled state of a three-qubit Heisenberg \( XX \) ring via quantum teleportation. Phys. Rev. A 68, 022316 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    Barjaktarevic, J.P., et al.: Measurement-based teleportation along quantum spin chains. Phys. Rev. Lett. 95, 230501 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Qiu, L., Wang, A.M., Ma, X.S.: Optimal dense coding with thermal entangled states. Physica A 383, 325–330 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Xian He, X., He, J., Zheng, J.: Thermal entangled quantum heat engine. Physica A 391, 6594–6600 (2012)ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    He, J.Z., He, X., Zheng, J.: Thermal entangled quantum heat engine working with a three-qubit Heisenberg \( XX \) model. Int. J. Theor. Phys 51, 2066–2076 (2012)CrossRefzbMATHGoogle Scholar
  10. 10.
    Audretsch, J.: Entangled Systems: New Directions in Quantum Physics. Wiley, Weinheim (2008)zbMATHGoogle Scholar
  11. 11.
    Amico, L., et al.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rieper, E., Anders, J., Vedral, V.: Entanglement at the quantum phase transition in a harmonic lattice. New J. Phys. 12, 025017 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    Androvitsaneas, P., Paspalakis, E., Terzis, A.F.: A quantum Monte Carlo study of the localizable entanglement in anisotropic ferromagnetic Heisenberg chains. Ann. Phys. 327, 212–223 (2012)ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    Ghio, M., et al.: Multipartite entanglement detection for hypergraph states. J. Phys. A 51, 045302 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chen, L., Han, K.H., Kye, S.H.: Separability criterion for three-qubit states with a four dimensional norm. J. Phys. A 50, 345303 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Han, K.H., Kye, S.H.: Construction of multi-qubit optimal genuine entanglement witnesses. J. Phys. A 49, 175303 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Soltani, M.R., Vahedi, J., Mahdavifar, S.: Quantum correlations in the \( 1D \) spin-\( 1/2 \) Ising model with added Dzyaloshinskii–Moriya interaction. Physica A 416, 321–330 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Rutkowski, A., Horodecki, P.: Tensor product extension of entanglement witnesses and their connection with measurement-device-independent entanglement witnesses. Phys. Lett. A 378, 2043–2047 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Aolita, L., de Melo, F., Davidovich, L.: Open-system dynamics of entanglement:a key issues review. Rep. Prog. Phys 78, 042001 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    Anders, J., et al.: Detecting entanglement with a thermometer. New J. Phys. 8, 140 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    Terhal, B.M.: Bell inequalities and the separability criterion. Phys. Lett. A 271, 319 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Lewenstein, M., et al.: Optimization of entanglement witnesses. Phys. Rev. A 62, 052310 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    Horodecki, M., Horodecki, P., Horodeck, R.: Separability of n-particle mixed states: necessary and sufficient conditions in terms of linear maps. Phys. Lett. A 283, 1 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Horodecki, M., Horodecki, P., Horodeck, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Acín, A., et al.: Classification of mixed three-qubit states. Phys. Rev. Lett. 87, 040401 (2001)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Koh, C.Y., Kwek, L.C.: Entanglement witness for spin glass. Physica A 420, 324–330 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    Töth, G.: Entanglement witnesses in spin models. Phys. Rev. A 71, 010301 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Gühne, O., Tóth, G.: Energy and multipartite entanglement in multidimensional and frustrated spin models. Phys. Rev. A 73(5), 052319 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    Wieśniak, M., et al.: Magnetic susceptibility as a macroscopic entanglement witness. New J. Phys. 7, 258 (2005)CrossRefGoogle Scholar
  30. 30.
    Ghosh, S., et al.: Entangled quantum state of magnetic dipoles. Nature 425, 48 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    Souza, A.M., et al.: Experimental determination of thermal entanglement in spin clusters using magnetic susceptibility measurements. Phys. Rev. B 77, 104402 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Soares-Pinto, D.O., et al.: Entanglement temperature in molecular magnets composed of S-spin dimers. Europhys. Lett. 87, 40008 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    Smirnov, A.Y., Amin, M.H.: Ground-state entanglement in coupled qubits. Phys. Rev. A 88, 022329 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    Singh, H., et al.: Experimental quantification of entanglement through heat capacity. New J. Phys. 15, 113001 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    Arian Zad, H.: Entanglement detection in the mixed-spin using \( XY \) model. Chin. Phys. B 25, 030303 (2016)CrossRefGoogle Scholar
  36. 36.
    Bäuml, S., et al.: Witnessing entanglement by proxy. New J. Phys. 18, 015002 (2016)CrossRefGoogle Scholar
  37. 37.
    Tura, J., et al.: Energy as a detector of nonlocality of many-body spin systems. Phys. Rev. X 7, 021005 (2017)Google Scholar
  38. 38.
    Hu, M., Fan, H.: Quantum-memory-assisted entropic uncertainty principle, teleportation, and entanglement witness in structured reservoirs. Phys. Rev. A 86, 032338 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    Gühne, O., Töth, G.: Entanglement detection. Phys. Rep. 474, 1–75 (2009)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, Cambridge (1982)zbMATHGoogle Scholar
  41. 41.
    Ravindran, A., Ragsdell, K.M., Reklaitis, G.V.: Engineering Optimization: Methods and Applications, 2nd edn. Wiley, Hoboken (2006)CrossRefGoogle Scholar
  42. 42.
    Wang, X.: Threshold temperature for pairwise and many-particle thermal entanglement in the isotropic Heisenberg model. Phys. Rev. A 66, 044305 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    Wang, X., Zanardi, P.: Quantum entanglement and Bell inequalities in Heisenberg spin chains. Phys. Lett. A 301, 1–6 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceUrmia UniversityUrmiaIran

Personalised recommendations