Advertisement

Jarzynski’s Equality, Fluctuation Theorems, and Variance Reduction: Mathematical Analysis and Numerical Algorithms

  • Carsten Hartmann
  • Christof Schütte
  • Wei ZhangEmail author
Article
  • 60 Downloads

Abstract

In this paper, we study Jarzynski’s equality and fluctuation theorems for diffusion processes. While some of the results considered in the current work are known in the (mainly physics) literature, we review and generalize these nonequilibrium theorems using mathematical arguments, therefore enabling further investigations in the mathematical community. On the numerical side, variance reduction approaches such as importance sampling method are studied in order to compute free energy differences based on Jarzynski’s equality.

Keywords

Jarzynski’s equality Fluctuation theorem Nonequilibrium dynamics Free energy difference Variance reduction Reaction coordinate 

Notes

Acknowledgements

The authors acknowledge financial support by the Einstein Center of Mathematics (ECMath) through project CH21, and the DFG-CRC 1114 “Scaling Cascades in Complex Systems” through project A05 “Probing scales in equilibrated systems by optimal nonequilibrium forcing” and B05 “Origin of the scaling cascades in protein dynamics”. Part of the work was done while CS and WZ were attending the program “Complex High-Dimensional Energy Landscapes” at IPAM (UCLA), 2017. The authors thank the institute for hospitality and support.

References

  1. 1.
    Abrams, C., Bussi, G.: Enhanced sampling in molecular dynamics using metadynamics, replica-exchange, and temperature-acceleration. Entropy 16(1), 163–199 (2014)ADSMathSciNetGoogle Scholar
  2. 2.
    Abreu, D., Seifert, U.: Extracting work from a single heat bath through feedback. EPL 94(1), 10001 (2011)ADSGoogle Scholar
  3. 3.
    Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics. Birkhäuser, Basel (2005)zbMATHGoogle Scholar
  4. 4.
    Aurell, E., Mejía-Monasterio, C., Muratore-Ginanneschi, P.: Optimal protocols and optimal transport in stochastic thermodynamics. Phys. Rev. Lett. 106, 250601 (2011)ADSGoogle Scholar
  5. 5.
    Banyaga, A., Hurtubise, D.: Lectures on Morse Homology. Texts in the Mathematical Sciences. Springer, Berlin (2004)zbMATHGoogle Scholar
  6. 6.
    Bennett, C.H.: Efficient estimation of free energy differences from monte carlo data. J. Comput. Phys. 22(2), 245–268 (1976)ADSMathSciNetGoogle Scholar
  7. 7.
    Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, New York (2006)zbMATHGoogle Scholar
  8. 8.
    Callen, H.: Thermodynamics and an Introduction to Thermostatistics. Wiley, New York (1985)zbMATHGoogle Scholar
  9. 9.
    Chaudhari, P., Oberman, A., Osher, S., Soatto, S., Carlier, G.: Deep relaxation: partial differential equations for optimizing deep neural networks. Submitted (2017)Google Scholar
  10. 10.
    Chetrite, R., Gawȩdzki, K.: Fluctuation relations for diffusion processes. Commun. Math. Phys. 282(2), 469–518 (2008)ADSMathSciNetzbMATHGoogle Scholar
  11. 11.
    Christ, C.D., Mark, A.E., van Gunsteren, W.F.: Basic ingredients of free energy calculations: a review. J. Comput. Chem. 31(8), 1569–1582 (2010)Google Scholar
  12. 12.
    Ciccotti, G., Kapral, R., Vanden-Eijnden, E.: Blue moon sampling, vectorial reaction coordinates, and unbiased constrained dynamics. ChemPhysChem 6(9), 1809–1814 (2005)Google Scholar
  13. 13.
    Ciccotti, G., Lelièvre, T., Vanden-Eijnden, E.: Projection of diffusions on submanifolds: application to mean force computation. Commun. Pure Appl. Math. 61(3), 371–408 (2008)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Crooks, G.E.: Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems. J. Stat. Phys. 90(5), 1481–1487 (1998)ADSMathSciNetzbMATHGoogle Scholar
  15. 15.
    Crooks, G.E.: Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721–2726 (1999)ADSGoogle Scholar
  16. 16.
    Crooks, G.E.: Path-ensemble averages in systems driven far from equilibrium. Phys. Rev. E 61, 2361–2366 (2000)ADSGoogle Scholar
  17. 17.
    Darbon, J., Osher, S.: Algorithms for overcoming the curse of dimensionality for certain Hamilton–Jacobi equations arising in control theory and elsewhere. Res. Math. Sci. 3(1), 19 (2016)MathSciNetzbMATHGoogle Scholar
  18. 18.
    de Koning, M., Cai, W., Antonelli, A., Yip, S.: Efficient freeenergy calculations by the simulation of nonequilibrium processes. Comput. Sci. Eng. 2(3), 88–96 (2000)Google Scholar
  19. 19.
    Dellago, C., Hummer, G.: Computing equilibrium free energies using non-equilibrium molecular dynamics. Entropy 16(1), 41 (2014)ADSMathSciNetGoogle Scholar
  20. 20.
    Dupuis, P., Spiliopoulos, K., Wang, H.: Importance sampling for multiscale diffusions. Multiscale Model. Simul. 10(1), 1–27 (2012)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1991)zbMATHGoogle Scholar
  22. 22.
    Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions. Springer, Berlin (2006)zbMATHGoogle Scholar
  23. 23.
    Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications. Computational Science Series. Elsevier, San Diego (2001)zbMATHGoogle Scholar
  24. 24.
    Ge, H., Jiang, D.-Q.: Generalized Jarzynski’s equality of inhomogeneous multidimensional diffusion processes. J. Stat. Phys. 131(4), 675–689 (2008)ADSMathSciNetzbMATHGoogle Scholar
  25. 25.
    Givon, D., Kupferman, R., Stuart, A.: Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity 17(6), R55–R127 (2004)ADSMathSciNetzbMATHGoogle Scholar
  26. 26.
    Gore, J., Ritort, F., Bustamante, C.: Bias and error in estimates of equilibrium free-energy differences from nonequilibrium measurements. Proc. Natl. Acad. Sci. USA 100(22), 12564–12569 (2003)ADSMathSciNetzbMATHGoogle Scholar
  27. 27.
    Gyöngy, I.: Mimicking the one-dimensional marginal distributions of processes having an Ito differential. Probab. Theory Relat. Fields 71(4), 501–516 (1986)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Hartmann, C., Richter, L., Schütte, C., Zhang, W.: Variational characterization of free energy: theory and algorithms. Entropy 19(11), 626 (2017)ADSGoogle Scholar
  29. 29.
    Hartmann, C., Schütte, C., Weber, M., Zhang, W.: Importance sampling in path space for diffusion processes with slow-fast variables. Probab. Theory Relat. Fields 170, 177–228 (2017)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Hartmann, C., Schütte, C., Zhang, W.: Model reduction algorithms for optimal control and importance sampling of diffusions. Nonlinearity 29(8), 2298–2326 (2016)ADSMathSciNetzbMATHGoogle Scholar
  31. 31.
    Haussmann, U.G., Pardoux, E.: Time reversal of diffusions. Ann. Probab. 14(4), 1188–1205 (1986)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Hendrix, D.A., Jarzynski, C.: A “fast growth” method of computing free energy differences. J. Chem. Phys. 114(14), 5974–5981 (2001)ADSGoogle Scholar
  33. 33.
    Horowitz, J.M., Vaikuntanathan, S.: Nonequilibrium detailed fluctuation theorem for repeated discrete feedback. Phys. Rev. E 82, 061120 (2010)ADSGoogle Scholar
  34. 34.
    Hummer, G., Kevrekidis, I.G.: Coarse molecular dynamics of a peptide fragment: free energy, kinetics, and long-time dynamics computations. J. Chem. Phys. 118(23), 10762–10773 (2003)ADSGoogle Scholar
  35. 35.
    Hummer, G., Szabo, A.: Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proc. Natl. Acad. Sci. USA 98(7), 3658–3661 (2001)ADSGoogle Scholar
  36. 36.
    Jarzynski, C.: Equilibrium free-energy differences from nonequilibrium measurements: a master-equation approach. Phys. Rev. E 56, 5018–5035 (1997)ADSGoogle Scholar
  37. 37.
    Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690–2693 (1997)ADSGoogle Scholar
  38. 38.
    Jarzynski, C.: Rare events and the convergence of exponentially averaged work values. Phys. Rev. E 73, 046105 (2006)ADSGoogle Scholar
  39. 39.
    Jarzynski, C.: Nonequilibrium work relations: foundations and applications. Eur. Phys. J. B 64(3), 331–340 (2008)ADSMathSciNetGoogle Scholar
  40. 40.
    Krantz, S.G., Parks, H.R.: Geometric Integration Theory. Birkhäuser, Boston (2008)zbMATHGoogle Scholar
  41. 41.
    Kubo, R.: The fluctuation-dissipation theorem. Rep. Prog. Phys. 29(1), 255 (1966)ADSzbMATHGoogle Scholar
  42. 42.
    Legoll, F., Lelièvre, T.: Effective dynamics using conditional expectations. Nonlinearity 23(9), 2131–2163 (2010)ADSMathSciNetzbMATHGoogle Scholar
  43. 43.
    Lelièvre, T., Rousset, M., Stoltz, G.: Computation of free energy differences through nonequilibrium stochastic dynamics: the reaction coordinate case. J. Comput. Phys. 222(2), 624–643 (2007)ADSMathSciNetzbMATHGoogle Scholar
  44. 44.
    Lelièvre, T., Rousset, M., Stoltz, G.: Free Energy Computations: A Mathematical Perspective. N.J. Imperial College Press, London (2010)zbMATHGoogle Scholar
  45. 45.
    Lelièvre, T., Rousset, M., Stoltz, G.: Langevin dynamics with constraints and computation of free eneregy differences. Math. Comput. 81(280), 2071–2125 (2012)zbMATHGoogle Scholar
  46. 46.
    MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, New York (2002)Google Scholar
  47. 47.
    Maragliano, L., Vanden-Eijnden, E.: A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations. Chem. Phys. Lett. 426(13), 168–175 (2006)ADSGoogle Scholar
  48. 48.
    Marconi, U.M.B., Puglisi, A., Rondoni, L., Vulpiani, A.: Fluctuationdissipation: response theory in statistical physics. Phys. Rep. 461(4), 111–195 (2008)ADSGoogle Scholar
  49. 49.
    Minh, D.D.L., Chodera, J.D.: Optimal estimators and asymptotic variances for nonequilibrium path-ensemble averages. J. Chem. Phys. 131(13), 134110 (2009)ADSGoogle Scholar
  50. 50.
    Oberhofer, H., Dellago, C.: Optimum bias for fast-switching free energy calculations. Comput. Phys. Commun. 179(13):41–45 (2008). Special Issue Based on the Conference on Computational Physics 2007CCP (2007)Google Scholar
  51. 51.
    Oberhofer, H., Dellago, C., Geissler, P.L.: Biased sampling of nonequilibrium trajectories: can fast switching simulations outperform conventional free energy calculation methods? J. Phys. Chem. B 109(14), 6902–6915 (2005)Google Scholar
  52. 52.
    Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications, 5th edn. Springer, Berlin (2000)zbMATHGoogle Scholar
  53. 53.
    Ponmurugan, M.: Generalized detailed fluctuation theorem under nonequilibrium feedback control. Phys. Rev. E 82, 031129 (2010)ADSGoogle Scholar
  54. 54.
    Rousset, M., Stoltz, G.: Equilibrium sampling from nonequilibrium dynamics. J. Stat. Phys. 123(6), 1251–1272 (2006)ADSMathSciNetzbMATHGoogle Scholar
  55. 55.
    Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning (Information Science and Statistics), 1st edn. Springer, Berlin (2004)zbMATHGoogle Scholar
  56. 56.
    Sagawa, T., Ueda, M.: Generalized Jarzynski equality under nonequilibrium feedback control. Phys. Rev. Lett. 104, 090602 (2010)ADSGoogle Scholar
  57. 57.
    Sagawa, T., Ueda, M.: Fluctuation theorem with information exchange: role of correlations in stochastic thermodynamics. Phys. Rev. Lett. 109, 180602 (2012)ADSGoogle Scholar
  58. 58.
    Sagawa, T., Ueda, M.: Nonequilibrium thermodynamics of feedback control. Phys. Rev. E 85, 021104 (2012)ADSGoogle Scholar
  59. 59.
    Schmiedl, T., Seifert, U.: Optimal finite-time processes in stochastic thermodynamics. Phys. Rev. Lett. 98, 108301 (2007)ADSGoogle Scholar
  60. 60.
    Spiliopoulos, K.: Large deviations and importance sampling for systems of slow-fast motion. Appl. Math. Optim. 67, 123–161 (2013)MathSciNetzbMATHGoogle Scholar
  61. 61.
    Then, H., Engel, A.: Computing the optimal protocol for finite-time processes in stochastic thermodynamics. Phys. Rev. E 77, 041105 (2008)ADSGoogle Scholar
  62. 62.
    Vaikuntanathan, S., Jarzynski, C.: Escorted free energy simulations: improving convergence by reducing dissipation. Phys. Rev. Lett. 100, 190601 (2008)ADSGoogle Scholar
  63. 63.
    Vaikuntanathan, S., Jarzynski, C.: Escorted free energy simulations. J. Chem. Phys. 134(5), 054107 (2011)ADSGoogle Scholar
  64. 64.
    Vanden-Eijnden, E.: Some recent techniques for free energy calculations. J. Comput. Chem. 30(11), 1737–1747 (2009)Google Scholar
  65. 65.
    Vanden-Eijnden, E., Weare, J.: Rare event simulation of small noise diffusions. Commun. Pure Appl. Math. 65(12), 1770–1803 (2012)MathSciNetzbMATHGoogle Scholar
  66. 66.
    Weinan, E., Han, J., Jentzen, A.: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Commun. Math. Stat. 5(4), 349–380 (2017)MathSciNetzbMATHGoogle Scholar
  67. 67.
    Ytreberg, F.M., Swendsen, R.H., Zuckerman, D.M.: Comparison of free energy methods for molecular systems. J. Chem. Phys. 125(18), 184114 (2006)ADSGoogle Scholar
  68. 68.
    Ytreberg, F.M., Zuckerman, D.M.: Single-ensemble nonequilibrium path-sampling estimates of free energy differences. J. Chem. Phys. 120(23), 10876–10879 (2004)ADSGoogle Scholar
  69. 69.
    Zhang, W.: Ergodic SDEs on submanifolds and related numerical sampling schemes. Submitted (2018)Google Scholar
  70. 70.
    Zhang, W., Hartmann, C., Schütte, C.: Effective dynamics along given reaction coordinates, and reaction rate theory. Faraday Discuss. 195, 365–394 (2016)ADSGoogle Scholar
  71. 71.
    Zhang, W., Schütte, C.: Reliable approximation of long relaxation timescales in molecular dynamics. Entropy 19(7), 367 (2017)ADSGoogle Scholar
  72. 72.
    Zhang, W., Wang, H., Hartmann, C., Weber, M., Schütte, C.: Applications of the cross-entropy method to importance sampling and optimal control of diffusions. SIAM J. Sci. Comput. 36(6), A2654–A2672 (2014)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Carsten Hartmann
    • 1
  • Christof Schütte
    • 2
    • 3
  • Wei Zhang
    • 3
    Email author
  1. 1.Institut für MathematikBrandenburgische Technische Universität Cottbus-SenftenbergCottbusGermany
  2. 2.Institut für MathematikFreie Universität BerlinBerlinGermany
  3. 3.Zuse Institute BerlinBerlinGermany

Personalised recommendations